
Recurrence Relations
Sorting overview

After today, you should be able to…
…write recurrences for code snippets
…solve recurrences using telescoping, 
recurrence trees, and the master method

T (N) =

8
><

>:

✓(N logba) if a > bk

✓(NklogN) if a = bk

✓(Nk) if a < bk



A technique for analyzing 
recursive algorithms



} An equation (or inequality) that relates the  
Nth element of a sequence to certain of its 
predecessors (recursive case)

} Includes an initial condition (base case)
} Solution: A function of N.

Example. Solve using backward substitution.

T(N) = 2T(N/2) + N
T(1) = 1



Forward substitution
Backward substitution

Recurrence trees

Telescoping

Master Theorem

Simple
Often can’t solve 
difficult relations Visual

Great intuition for div-and-conquer

Widely applicable
Difficult to formulate
Not intuitive

Immediate
Only for div-and-conquer
Only gives Big-ThetaWhich 

telescope?

http://wiki.ogre3d.org/Mipmapping



What’s N?



1

What’s N?



} Basic idea: Set up equations so that when we sum 
all L sides and all R sides, we get an equation 
with lots of cancelation.

} Example: T(1) = 0, T(N) = T(N – 1) + N – 1

2



} In general, need to tweak the relation 
somehow so successive terms cancel

} Example: T(1) = 1, T(N) = 2T(N/2) + N
where N = 2k for some k

} Divide by N to get a “piece of the telescope”:

3

Etc.



4

N

N/2

N/4 N/4

N/2

N/4 N/4

⋮ ⋮ ⋮ ⋮ ⋮
1 1 1 1 1 1 1 1 1 … 1 1 1

Level

0

1

2

⋮
?

• How many nodes at level i?
• How much work at level i?
• Index of last level?

2i

2i (N/2i) = N
log2 N

Total:

Recurrence:
T(N) = 2T(N/2) + N
T(1) = 1



} For Divide-and-conquer algorithms
◦ Divide data into one or more parts of the same size
◦ Solve problem on one or more of those parts
◦ Combine "parts" solutions to solve whole problem

} Examples
◦ Binary search
◦ Merge Sort
◦ MCSS recursive algorithm we studied last time

Theorem 7.5 in Weiss

5



Theorem 7.5 in Weiss

5–7

} For any recurrence in the form:

} The solution is

Example: 2T(N/4) + N

T (N) =

8
><

>:

✓(N logba) if a > bk

✓(NklogN) if a = bk

✓(Nk) if a < bk

T (N) = aT (N/b) + ✓(Nk)

with a � 1, b > 1



cNk

c(N/b)k

c(N/b2)k c(N/b2)k c(N/b2)k

c(N/b)k

c(N/b2)k c(N/b2)k c(N/b2)k

c(N/b)k

c(N/b2)k c(N/b2)k c(N/b2)k

⋮ ⋮ ⋮ ⋮ ⋮
⋮ ⋮ ⋮ ⋮

c c c c c c c c c c c c … c c c

• How many nodes at level i?
• How much work at level i?
• Index of last level?

ai

ai c(N/bi)k = cNk(a/bk)i
logb N

Recurrence:
T(N) = aT(N/b) + cNk

T(1) ≤ c

…

…

…… …

Level

0

1

2

⋮
?

Summation:



} Upper bound on work at level i:

} a = “Rate of subproblem proliferation” !

} bk = “Rate of work shrinkage” "

Case ! a < bk " ! a = bk " ! a > bk "

As level i
increases…

" work goes 
down!

# work stays 
same

! work goes 
up!

T(N) dominated 
by work done 
at…

Root of tree Every level 
similar

Leaves of tree

Master Theorem 
says T(N) in…

Θ(Nk) Θ(Nk log N) Θ(Nlogba)



} Case 1. a < bk

} Case 2. a = bk

} Case 3. a > bk

cNk

logb NX

i=0

1 = cNk(logb N + 1) ⇥(Nk logN)

cNk

logb NX

i=0

⇣ a

bk

⌘i

cNk

✓
(a/bk)logb N+1 � 1

(a/bk)� 1

◆
⇡ cNk(a/bk)logb N = calogb N = cN logb a

cNk

✓
1� (a/bk)logb N+1

1� (a/bk)

◆
⇡ cNk

✓
1

1� (a/bk)

◆



} Analyze code to determine relation
◦ Base case in code gives base case for relation
◦ Number and “size” of recursive calls determine 

recursive part of recursive case
◦ Non-recursive code determines rest of recursive 

case
} Apply a strategy
◦ Guess and check (substitution)
◦ Telescoping
◦ Recurrence tree
◦ Master theorem



Quick look at several sorting 
methods
Focus on quicksort
Quicksort average case analysis



} Name as many as you can
} How does each work?
} Running time for each (sorting N items)?
◦ best
◦ worst
◦ average
◦ extra space requirements

} Spend 10 minutes with a group of 2-3, answering 
these questions. Then we will summarize

Put list on board

8–10



ht
tp

:/
/w

w
w

.x
kc

d.
co

m
/1

18
5/

Stacksort connects to StackOverflow, searches for “sort a list”, 
and downloads and runs code snippets until the list is sorted.


