
Heapsort

After this lesson, you should be able to  … 
… explain how and why you can build a heap in O(n) time
… implement heapsort



5 10 16 8 21 3 7 12 3 5 7 8 10 12 16 21

§ Given array arr of Comparables, sort arr.

arr arr



§ Start with an empty auxiliary data structure, DS
§ Step A. Insert each item from the unsorted array into DS
§ Step B. Copy the items from DS (selecting the most 

extreme item first, then the next most extreme, etc.) one 
at a time, back into the original array

§ What data structures work for DS? 
§ BST? Hash set? PQ/heap?

5 10 16 8 21 3 7 12 3 5 7 8 10 12 16 21
arr arr

DSA B

2



§ Start with empty heap
§ Step A. Insert each array element into heap, 

being sure to maintain the heap property 
after each insert

§ Step B. Repeatedly run deleteMin on the heap, 
copying elements back into array.

§ Analysis?

3



§ Claim. log 1 + log 2 + log 3 +⋯+ log𝑁 is Θ(𝑁 log𝑁) .

Use Stirling's 
approximation:
Wikipedia link

http://en.wikipedia.org/wiki/Stirling's_approximation


§ Add the elements to the heap
§ Repeatedly call insert O(n log n)

§ Copy the elements back to the array in order
§ Repeatedly call deleteMin O(n log n)

§ Total O(n log n)

§ Can we do better for the insertion part?
§ Yes, we don’t need it to be a heap until we are ready to 

start deleting. 
§ insert all the items in arbitrary order into the heap’s 

internal array and then use BuildHeap (next)

4



BuildHeap takes a complete tree that is not a heap and 
exchanges elements to get it into heap form

At each stage it takes a root plus two heaps and  "percolates 
down" the root to restore "heapness" to the entire subtree

Why this starting point?

6



Figure 21.17  Implementation of the linear-time buildHeap method

Data Structures & Problem Solving using JAVA/2E Mark Allen Weiss      © 2002  Addison Wesley



Figure 21.18
(a) After percolateDown(6); 
(b) after percolateDown(5)

Data Structures & Problem Solving using JAVA/2E Mark Allen Weiss      © 2002  Addison Wesley



Figure 21.19
(a) After percolateDown(4); 
(b) after percolateDown(3)

Data Structures & Problem Solving using JAVA/2E Mark Allen Weiss      © 2002  Addison Wesley



Figure 21.20
(a)After percolateDown(2); 
(b) after percolateDown(1) and buildHeap terminates

Data Structures & Problem Solving using JAVA/2E Mark Allen Weiss      © 2002  Addison Wesley



§ Find a summation that represents the 
maximum number of comparisons required 
to rearrange an array of N=2H+1-1 elements 
into a heap
§ How many comparisons? The sum of the heights.

§ Can you find a summation and its value?

§ In HW8, you’ll do this.
§ Conclusion: buildHeap is O(N)

7



§ Add the elements to the heap
§ Insert n elements into heap (call buildHeap, faster)

§ Remove the elements and place into the array
§ Repeatedly call deleteMin



§ With one final tweak, heapsort only needs O(1) 
extra space!

§ Idea:
§ When we deleteMin, we free up space at the end of the 

heap’s array.
§ Idea: write deleted item in just-vacated space!
§ Would result in a reverse-sort. Can fix in linear time, but 

better: use a max-heap. Then, comes out in order!

§ http://www.cs.usfca.edu/~galles/visualization/H
eapSort.html

8–9

http://www.cs.usfca.edu/~galles/visualization/HeapSort.html

