CSSE 230 Day 21

Heapsort

After this lesson, you should be able to ...
... explain how and why you can build a heap in O(n) time
... implement heapsort

Sorting Problem

arr

16

21

12

» Given array arr of Comparables, sort arr.

—

arr

10

12

16

21

Idea: Using an auxiliary data
structure for sorting

arr arr

5 1016 (8 |21 3 |7 |12 3 5 /7 |8 |10 12|16

AN A

Start with an empty awxiliary data structure, DS
Step A. Insert each item from the unsorted array into DS
Step B. Copy the items from DS (selecting the most

extreme item first, then the next most extreme, etc.) one
at a time, back into the original array

What data structures work for DS?
= BST? Hash set? PQ/heap?

Naive Heapsort

= Start with empty heap

= Step A. Insert each array element into heap,
being sure to maintain the heap property
after each insert

= Step B. Repeatedly run deleteMin on the heap,
copying elements back into array.

= Analysis?

Analysis of naive heapsort
= Claim. log1 +1log2 +log3 + -+ logN is ©(NlogN).

Use Stirling's
approximation:
Wikipedia link nn!l=nhn—-—n+ O(ln(n))l

10°
10° F
104 +
103 +
10°
10! +

10° +

10-[1 1 1 L i
10° 10° 107 10°3 104 10°

http://en.wikipedia.org/wiki/Stirling's_approximation

Analysis of naive heapsort
» Add the elements to the heap

= Repeatedly call insert O(n log n)
= Copy the elements back to the array in order

» Repeatedly call deleteMin O(n log n)
= Total O(n log n)

= Can we do better for the insertion part?

* Yes, we don’t need it to be a heap until we are ready to
start deleting.

» insert all the items in arbitrary order into the heap’s
internal array and then use BuildHeap (next)

BuildHeap takes a complete tree that 1s not a heap and
exchanges elements to get 1t into heap form

At each stage 1t takes a root plus two heaps and "percolates
down" the root to restore "heapness" to the entire subtree

* Establash heap order properiyv from an arbatrary
* grrangement of 1tems. Runs in linear taime
private vold buildHeap ()
{
for({ int i = currentSize / 2; 1 > 0; i--)

percolateDown(1)

Why this starting point?

Figure 21.17 Implementation of the linear-time buildHeap method

private voild buildHeap |)
{

for(int i = currentSize / 2; 1 > 0; i--)
percolateDown(1)

Figure 21.18

(a) After percolateDown(6);
(b) after percolateDown(5)

Figure 21.19

(a) After percolateDown(4);
(b) after percolateDown(3)

Figure 21.20
(a)After percolateDown(2);
(b) after percolateDown(1) and buildHeap terminates

Analysis of BuildHeap

* Find a summation that represents the
maximum number of comparisons required
to rearrange an array of N=2H+1-1 elements
into a heap
* How many comparisons? The sum of the heights.

= Can you find a summation and its value?

= [n HWS, you'’ll do this.
= Conclusion: buildHeap is O(N)

Analysis of better heapsort

= Add the elements to the heap
*Insert-n-elementsinto-heap (call buildHeap, faster)

= Remove the elements and place into the array
= Repeatedly call deleteMin

In-place heapsort

= With one final tweak, heapsort only needs O(1)
extra space!

= |[dea:
= When we deleteMin, we free up space at the end of the
heap’s array.
» |dea: write deleted item in just-vacated space!

= Would result in a reverse-sort. Can fix in linear time, but
better: use a max-heap. Then, comes out in order!

8-9

http://www.cs.usfca.edu/~galles/visualization/HeapSort.html

