

Height-Balanced Trees

After today, you should be able to...
...give the minimum number of nodes in a height-balanced tree ...explain why the height of a height-balanced trees is $\mathrm{O}(\log n)$
...help write an induction proof

Today's Agenda

- Announcements
- EditorTrees team preferences survey due 5 PM
- HW 4 due tonight
- Also Doublets partner evaluation survey
- Exam 2 (programming only) in class on Wed You'll have about 85 minutes for the exam
- Another induction example
- Recap: The need for balanced trees
- Analysis of worst case for height-balanced (AVL) trees

A useful result... by way of induction

- Recall the definition of the Fibonacci numbers:
- $F_{0}=0, F_{1}=1, F_{n}=F_{n-1}+F_{n-2}$
- Prove the closed form:
7.8 Prove by induction the formula

$$
F_{N}=\frac{1}{\sqrt{5}}\left(\left(\frac{(1+\sqrt{5})}{2}\right)^{N}-\left(\frac{1-\sqrt{5}}{2}\right)^{N}\right)
$$

Recall: How to show that property $\mathrm{P}(\mathrm{n})$ is true for all $\mathrm{n} \geq \mathrm{n}_{\mathbf{0}}$:
(1) Show the base case(s) directly
(2) Show that if $P(j)$ is true for all j with $n_{0} \leq j<k$, then $P(k)$ is true also

Details of step 2:

a. Fix "arbitrary but specific" $k \geq$ \qquad .
b. Write the induction hypothesis: assume $P(j)$ is true $\forall j$: $n_{0} \leq j<k$
c. Prove $P(k)$, using the induction hypothesis.

Review: The number of nodes in a tree with height $h(T)$ is bounded

Review: Therefore the height of a tree with $N(T)$ nodes is also bounded

We want to keep trees balanced so that the run time of BST algorithms is minimized

- BST algorithms are $\mathrm{O}(\mathrm{h}(\mathrm{T})$)
- Minimum value of $\mathbf{h}(\mathbf{T})$ is $\lceil\log (N(T)+1)\rceil-1$
- Should we rearrange the tree after an insertion to guarantee that $h(T)$ is always minimized?
- Maintain "Complete balance"

But keeping complete balance is too expensive!

- Consider inserting 1 in the following tree.
- What does it take to get back to complete balance?
- Keeping completely balanced is too expensive:
- $\mathrm{O}(\mathrm{N})$ to rebalance after insertion or deletion

Solution: Height Balanced Trees (less is more) whose heights differ by at most 1

More precisely, a binary tree \mathbf{T} is height balanced if
T is empty, or if
\mid height $\left(T_{L}\right)$ - height $\left(T_{R}\right) \mid \leq 1$, and
T_{L} and T_{R} are both height balanced.

What is the tallest (worst) height-balanced tree

Is it taller than a completely balanced tree?

- Consider the dual concept: find the minimum number of nodes for height h.

A binary search tree \mathbf{T} is height balanced if

T is empty, or if
$\mid \operatorname{height}\left(T_{L}\right)$ - height $\left(T_{R}\right) \mid \leq 1$, and
T_{L} and T_{R} are both height balanced.

An AVL tree is a height-balanced BST that

 maintains balance using "rotations"- Named for authors of original paper, Adelson-Velskii and Landis (1962).
- Max. height of an AVL tree with \mathbf{N} nodes is: $H<1.44 \log (N+2)-1.328=O(\log N)$
- Why?
- Worst cases for BST operations are $\mathbf{O}(\mathbf{h}(\mathrm{T})$)
- find, insert, and delete
- $\mathrm{h}(\mathrm{T})$ can vary from $\mathrm{O}(\log \mathrm{N})$ to $\mathrm{O}(\mathrm{N})$
- Height of a height-balanced tree is $\mathbf{O}(\log \mathbf{N})$
- So if we can rebalance after insert or delete in $\mathbf{O}(\log \mathbf{N})$ time, then all operations are $\mathbf{O}(\log \mathbf{N})$

