
Binary Search Tree intro
BST with order properties
After today, you should be able to…
… implement insertion into a BST
… implement search (contains) in a BST
… implement deletion from a BST

Q1

§ Doublets
§ Due tonight
§ Team eval due the day after you submit
§ Behavior of different ChainManagers?
§ Efficiently populating the Links data structure?

§ Upcoming assignments: HW4, BST

§ Quiz review problems

Q1

Binary Trees that store
elements so that an they
appear in increasing
order in an in-order
traversal

A BST is a Binary Tree T with
these properties:

1. Elements are Comparable, and
non-null

2. No duplicate elements (we
implement TreeSet)

3. All elements in T’s left subtree
are less than the root element

4. All elements in T’s right subtree
are greater than the root element

5. Both subtrees are BSTs

x

TL
BST

TR
BST

< x > x

§ Search (contains) is now easier, and possibly
more efficient
§ Why?
§ What can we say about running time of contains()?

Q2

Q3-4

Class activity: Draw
a "birthday BST”!

§ Rule of thumb: insert at a null-node location.
§ Only one such location will maintain search

property!

§ To insert a node,
§ Compare to know which child to recurse on
§ We recognize where to insert once we’ve found the

NULL_NODE. Why won’t the following code work?

§ It’s the calling object (parent node or BST itself)
who should really attach the new node!

Bad code

class BinaryNode {
//...
void insert(T item) {

if (this == NULL_NODE) {
this = new BinaryNode(item);

}
// ...

}
}

Q5

NULL_NODE

left = left.insert(80);

return new BinaryNode(80);

When NULL_NODE is found,
return a new node.

Parent who called insert on the
NULL_NODE then sets the
returned value to be its
appropriate child

For it to work, other nodes
along the recursive descent
should return .

Q6

§ How to handle each case using the recommended
recursive pattern?
§ No children
§ 1 child
§ 2 children

https://en.wikipedia.org/wiki/Binary_search_tree#Deletion
Hibbard deletion: http://dl.acm.org/citation.cfm?id=321108

https://en.wikipedia.org/wiki/Binary_search_tree
http://dl.acm.org/citation.cfm%3Fid=321108

Q7

§ Each recurses down only one branch of the
tree!

§ So what can we say about worst-case big-O
runtimes?

public class BinarySearchTree<T extends Comparable<T>> {

private BinaryNode root;
public BinarySearchTree() {
this.root = NULL_NODE;

}
// Does this tree contain x?
public boolean contains(T x)

// insert x. If already there, return false
public boolean insert(T x)

// delete x. If not there, return false
public boolean delete(T x)

// 3 cases

§ Challenge:
§ The recursive BinaryNode.insert() returns a BinaryNode. (Child to

parent: “This is the root of my subtree”)
§ We want our BST.insert() operation to return a boolean (“The node

was/wasn’t successfully added”.)
§ How do nodes communicate this boolean up the tree, when their return

value is already used?
§ Could let the boolean be a BST field. But, poor

encapsulation: sticks around even outside call to insert().
§ Two alternative solutions:

§ Can the helper method return 2 things?
§ Create a simple composite class to hold both a boolean and a

BinaryNode.
§ Can you pass a parameter to the helper method and mutate it?

§ Java uses call-by-value, and a boolean is a primitive so can’t be
mutated. Even Booleans can’t be mutated as the class is declared final.

§ Create, and pass a simple BooleanContainer object so you can mutate
the boolean inside.

§ Modifying (inserting/deleting) from a tree
should cause any active iterators to fail the
next time the active iterator is accessed (i.e.,
throw a ConcurrentModificationException).
§ How do you detect this?
§ Modification count

§ How do you implement an iterator’s remove()?
§ Just call BST remove().
§ But throw exceptions if next() hasn’t been called, or

if remove() is called twice in a row. (Javadoc for
TreeSet iterator has details.)

