
Maximum Contiguous Subsequence Sum

After today’s class you will be able to:
state and solve the MCSS problem on small arrays by observation
find the exact runtimes of the naive MCSS algorithms

https://openclipart.org/image/2400px/svg_to_png/169467/bow_tie.png

Q1-3, 
4a



} Homework 1 due tonight
◦ Lots of help available today if still working. 

Instructors, Lab TAs, CampusWire

} WarmUpAndStretching due after next class
◦ Iterators? Read code comments, or Weiss Ch. 1-4.

} Reading for Day 4: Why Math?



} Finish up big-O, so you can 
◦ explain the meaning of big-O, big-Omega (W), and 

big-Theta (Θ)
◦ apply the definition of big-O to asymptotically 

analyze functions, and running time of algorithms

} Analyze algorithms for a sample problem, 
Maximum Contiguous Subsequence Sum 
(MCSS), so you can
◦ state and solve the MCSS problem on small arrays by 

observation
◦ find the exact runtimes of the naive MCSS algorithms



Big-O
Big-Omega
Big-Theta



} f(n) is O(g(n)) if there exist c, n0 such that:
f(n) ≤ cg(n) for all n ≥ n0

◦ So big-Oh (O) gives an upper bound

} f(n) is W(g(n)) if there exist c, n0 such that:
f(n) ≥ cg(n) for all n ≥ n0

◦ So big-omega (W) gives a lower bound

} f(n) is Θ(g(n)) if it is both O(g(n)) and W(g(n))
Or equivalently:

} f(n) is Θ(g(n)) if there exist c1, c2, n0 such that:
c1g(n) ≤ f(n) ≤ c2g(n) for all n ≥ n0

◦ So big-theta (Θ) gives a tight bound
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} Give tightest bound you can
◦ Saying 3n + 2 is O(n3) is true*, but not as precise as 

saying it’s O(n)
◦ *When we ask for true/false, use the definitions.
◦ And when analyzing code, we’ll just ask for Θ to be 

clear.

} Simplify:
◦ You could also say: 3n + 2 is O(5n - 3log(n) + 17)
◦ And it would be technically correct…
◦ It would also be poor taste … and your grade will 

reflect that.



} By definition, applied to functions.
“f(n) = n2/2 + n/2 – 1    is   Θ(n2)”

} Can also be applied to an algorithm, referencing its 
running time: e.g., when f(n) describes the number of 
executions of the most-executed line of code.

“selection sort is Θ(n2)”

} Finally, can be applied to a problem, referencing its 
complexity: the running time of the best algorithm that 
solves it.

“The sorting problem is O(n2)”



} There are times when one might choose a 
higher-order algorithm over a lower-order 
one.

} Brainstorm some ideas to share with the class

C.A.R. Hoare, inventor of quicksort, wrote:
Premature optimization is the root of all evil.
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Next week’s programming 
assignment is with a partner



} No prima donnas
◦ Working way ahead, finishing on your own, or 

changing the team’s work without discussion:
� harms the education of your teammates

} No laggards
◦ Coasting by on your team’s work:
� harms your education

} Both extremes
� are selfish
� may result in a failing grade for you on the project



} We’ll assign an overall grade to the project
} Grades of individuals will be adjusted up or 

down based on team members’ assessments

} At the end of the project each of you will:
◦ Rate each member of the team, including yourself
◦ Write a short Performance Evaluation of each team 

member with evidence that backs up the rating
� Positives
� Key negatives



Excellent—Consistently did what he/she was supposed to do, very well 
prepared and cooperative, actively helped teammate to carry fair 
share of the load

Very good—Consistently did what he/she was supposed to do, very 
well prepared and cooperative

Satisfactory—Usually did what he/she was supposed to do, acceptably 
prepared and cooperative

Ordinary—Often did what he/she was supposed to do, minimally 
prepared and cooperative

Marginal—Sometimes failed to show up or complete tasks, rarely 
prepared

Deficient—Often failed to show up or complete tasks, rarely prepared
Unsatisfactory—Consistently failed to show up or complete tasks, 

unprepared
Superficial—Practically no participation
No show—No participation at all



A deceptively deep problem 
with a surprising solution.

{-3, 4, 2, 1, -8, -6, 4, 5, -2}



} Problem: Given a sequence of numbers, find 
the maximum sum of a contiguous 
subsequence.

} Why study?
} Positives and negatives make it interesting. 

Consider:
◦ What if all the numbers were positive?
◦ What if they all were negative?
◦ What if we left out “contiguous”?

} Analysis of obvious solution is neat
} We can make it more efficient later.
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} Problem definition: given a nonempty sequence 
of n (possibly negative) integers 𝐴!, 𝐴", 𝐴#, … , 𝐴$%", 
find the maximum contiguous subsequence

𝑆&,( =&
)*&

(

𝐴)

and the corresponding values of 𝑖 and 𝑗.

} Quiz questions:
◦ In {-2, 11, -4, 13, -5, 2}, S1,3 = ?
◦ In {1, -3, 4, -2, -1, 6}, what is MCSS?
◦ If every element is negative, what’s the MCSS?



◦ Must be easy to explain
◦ Correctness is KING. Efficiency doesn’t matter yet.
◦ 3 minutes

} Examples to consider:
◦ {-3, 4, 2, 1, -8, -6, 4, 5, -2}
◦ {5, 6, -3, 2, 8, 4, -12, 7, 2} 
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Where 
will this 
algorithm 
spend the 
most 
time?

How many times 
(exactly, as a function of 
N = a.length) will that 
statement execute?

i: beginning of 
subsequence

j: end of 
subsequence

k: steps through 
each element of 
subsequence

Find the sums of 
all subsequences



} What statement is executed the most often?
} How many times?
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for(int i = 0; i < a.length; i++) {
for(int j = i; j < a.length; j++) {

int thisSum = 0;
for (int k = i; k <= j; k++) {

thisSum += a[k];
}
// update max if thisSum is better

}
}



} We showed MCSS is O(n3). 
◦ Showing that a problem is O(g(n)) is relatively easy – just 

analyze a known algorithm.

} Is MCSS W(n3)? 
◦ Showing that a problem is W (g(n)) is much tougher. How do 

you prove that it is impossible to solve a problem more 
quickly than you already can?

◦ Or maybe we can find 
a faster algorithm?



for(int i = 0; i < a.length; i++) {
for(int j = i; j < a.length; j++) {

int thisSum = 0;
for (int k = i; k <= j; k++) {

thisSum += a[k];
}
// update max if thisSum is better

}
}

} The performance is bad!



This is Θ(?)

for(int i = 0; i < a.length; i++) {
int thisSum = 0;
for(int j = i; j < a.length; j++) {

thisSum += a[j];
// update max if thisSum is better

}
}

} Remember the previous sum so we don’t have to recompute it!



} Is MCSS W(n2)? 
◦ Showing that a problem is W (g(n)) is much tougher. How do 

you prove that it is impossible to solve a problem more 
quickly than you already can?

◦ Can we find a yet faster algorithm?



Tune in next time for the 
exciting conclusion!
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