

After today's class you will be able to:
state and solve the MCSS problem on small arrays by observation find the exact runtimes of the naive MCSS algorithms

Announcements

- Homework 1 due tonight
- Lots of help available today if still working. Instructors, Lab TAs, CampusWire
- WarmUpAndStretching due after next class - Iterators? Read code comments, or Weiss Ch. 1-4.
- Reading for Day 4: Why Math?

Agenda and goals

- Finish up big-O, so you can
- explain the meaning of big-O, big-Omega (Ω), and big-Theta (Θ)
- apply the definition of big-O to asymptotically analyze functions, and running time of algorithms
- Analyze algorithms for a sample problem, Maximum Contiguous Subsequence Sum (MCSS), so you can
state and solve the MCSS problem on small arrays by observation
- find the exact runtimes of the naive MCSS algorithms

Asymptotics: The "Big" Three

Big-O
Big-Omega
Big-Theta

Big-O, Big-Omega, Big-Theta

 Ω ()

 Ω ()}

- $f(n)$ is $O(g(n))$ if there exist c, n_{0} such that:

$$
f(n) \leq c g(n) \text { for all } n \geq n_{0}
$$

- So big-Oh (O) gives an upper bound
- $f(n)$ is $\Omega(g(n))$ if there exist c, n_{0} such that:

$$
f(n) \geq c g(n) \text { for all } n \geq n_{0}
$$

So big-omega (Ω) gives a lower bound

- $f(n)$ is $\Theta(g(n))$ if it is both $O(g(n))$ and $\Omega(g(n))$

Or equivalently:

- $f(n)$ is $\Theta(g(n))$ if there exist c_{1}, c_{2}, n_{0} such that:

$$
c_{1} g(n) \leq f(n) \leq c_{2} g(n) \text { for all } n \geq n_{0}
$$

So big-theta (Θ) gives a tight bound

Big-Oh Style

- Give tightest bound you can
- Saying $3 n+2$ is $\mathrm{O}\left(n^{3}\right)$ is true*, but not as precise as saying it's O(n)
- *When we ask for true/false, use the definitions.
- And when analyzing code, we'll just ask for Θ to be clear.
- Simplify:
- You could also say: $3 n+2$ is $O(5 n-3 \log (n)+17)$
- And it would be technically correct...
- It would also be poor taste ... and your grade will reflect that.

Uses of $\mathrm{O}, \Omega, \Theta$

- By definition, applied to functions.

$$
" f(n)=n^{2} / 2+n / 2-1 \text { is } \Theta\left(n^{2}\right) "
$$

- Can also be applied to an algorithm, referencing its running time: e.g., when $f(n)$ describes the number of executions of the most-executed line of code.
"selection sort is $\Theta\left(n^{2}\right)$ "
- Finally, can be applied to a problem, referencing its complexity: the running time of the best algorithm that solves it.
"The sorting problem is $\mathrm{O}\left(\mathrm{n}^{2}\right)$ "

Efficiency in context

There are times when one might choose a higher-order algorithm over a lower-order one.

- Brainstorm some ideas to share with the class
C.A.R. Hoare, inventor of quicksort, wrote:

Premature optimization is the root of all evil.

Thoughts on Teaming

Next week's programming assignment is with a partner

Two Key Rules

No prima donnas

- Working way ahead, finishing on your own, or changing the team's work without discussion:
- harms the education of your teammates
- No laggards
- Coasting by on your team's work:
- harms your education
- Both extremes
- are selfish
- may result in a failing grade for you on the project

Grading of Team Projects

We'll assign an overall grade to the project Grades of individuals will be adjusted up or down based on team members' assessments

At the end of the project each of you will:

- Rate each member of the team, including yourself
- Write a short Performance Evaluation of each team member with evidence that backs up the rating
- Positives
- Key negatives

Ratings

Excellent-Consistently did what he/she was supposed to do, very well prepared and cooperative, actively helped teammate to carry fair share of the load
Very good-Consistently did what he/she was supposed to do, very well prepared and cooperative
Satisfactory-Usually did what he/she was supposed to do, acceptably prepared and cooperative
Ordinary-Often did what he/she was supposed to do, minimally prepared and cooperative
Marginal-Sometimes failed to show up or complete tasks, rarely prepared
Deficient-Often failed to show up or complete tasks, rarely prepared
Unsatisfactory-Consistently failed to show up or complete tasks, unprepared
Superficial-Practically no participation
No show-No participation at all

Maximum Contiguous

 Subsequence SumA deceptively deep problem with a surprising solution.
$\{-3,4,2,1,-8,-6,4,5,-2\}$

A Nice Algorithm Analysis Example

Problem: Given a sequence of numbers, find the maximum sum of a contiguous subsequence.

Why study?

- Positives and negatives make it interesting. Consider:
- What if all the numbers were positive?
- What if they all were negative?
- What if we left out "contiguous"?
- Analysis of obvious solution is neat
, We can make it more efficient later.

Formal Definition of MCSS

- Problem definition: given a nonempty sequence of n (possibly negative) integers $A_{0}, A_{1}, A_{2}, \ldots, A_{n-1}$, find the maximum contiguous subsequence

$$
S_{i, j}=\sum_{k=i}^{j} A_{k}
$$

and the corresponding values of i and j.
Quiz questions:

- In $\{-2,11,-4,13,-5,2\}, S_{1,3}=$?
- In $\{1,-3,4,-2,-1,6\}$, what is MCSS?
- If every element is negative, what's the MCSS?

Write a simple correct algorithm now

- Must be easy to explain
- Correctness is KING. Efficiency doesn't matter yet.
- 3 minutes
- Examples to consider:
- $\{-3,4,2,1,-8,-6,4,5,-2\}$
- $\{5,6,-3,2,8,4,-12,7,2\}$

First Algorithm

Find the sums of a// subsequences

public final class MaxSubTest $\{$ private static int seqStart $=0$; private static int seqEnd $=0$;

/* First maximum contiguous subsequence sum algorithm. * seqStart and seqEnd represent the actual best sequence. */
public static int maxSubSum1 (int [] a) \{
i: beginning of int maxSum $=0$; subsequence . $/$ In the analysis we use " n " as a shorthand for "a.length for (int $i=0 ; i<a . l e n g t h ; i++$)

Where will this

 algorithm spend thek: steps through each element of subsequence
most

$$
\text { for (int } j=i ; j<a . l e n g t h ; j++) \text { \{ }
$$

int thisSum $=0$;

$$
\text { for (int } k=i ; k<=j ; k++)
$$

 \(\xrightarrow[\text { int thissum }]{\text { I }}=0\);
 $$
\text { टnisSum }+=a[k] ;
$$

time?
j: end of
subsequence

Analysis of this Algorithm

What statement is executed the most often?

- How many times?

```
for(int i = 0; i < a.length; i++) {
    for(int j = i; j < a.length; j++) {
    int thisSum = 0;
    for (int k = i; k <= j; k++) {
                        thisSum += a[k];
    }
    // update max if thisSum is better
    }
}
```


Where do we stand?

- We showed MCSS is $O\left(n^{3}\right)$.

Showing that a problem is $\mathrm{O}(\mathrm{g}(\mathrm{n})$) is relatively easy - just analyze a known algorithm.

- Is MCSS $\Omega\left(\mathrm{n}^{3}\right)$?

Showing that a problem is $\Omega(\mathrm{g}(\mathrm{n})$) is much tougher. How do you prove that it is impossible to solve a problem more quickly than you already can?

- Or maybe we can find

```
f(n) is O(g(n)) if f(n) \leqcg(n) for all n \geq no
    So O gives an upper bound
f(n) is \Omega(g(n)) if f(n) \geqcg(n) for all n \geq no
    So \Omega gives a lower bound
```



```
    So 0 gives a tight bound
    f(n) is 0(g(n)) if it is both O(g(n)) and \Omega(g(n))
```


What is the main source of the simple algorithm's inefficiency?
 ```for(int i = 0; i < a.length; i++) {```
 for(int j = i; j < a.length; j++) \{
 int thisSum = 0;
 for (int k = i; k <= j; k++) \{
 thisSum += a[k];
 \}
 // update max if thisSum is better
 \}
 \}

The performance is bad!

```
Eliminate the most obvious
inefficiency...
for(int i = 0; i < a.length; i++) {
    int thisSum = 0;
    for(int j = i; j < a.length; j++) {
    thisSum += a[j];
    // update max if thisSum is better
    }
}
```

- Remember the previous sum so we don't have to recompute it!

MCSS is $\mathrm{O}\left(\mathrm{n}^{2}\right)$

- Is MCSS $\Omega\left(\mathrm{n}^{2}\right)$?
- Showing that a problem is $\Omega(g(n))$ is much tougher. How do you prove that it is impossible to solve a problem more quickly than you already can?
- Can we find a yet faster algorithm?

```
\(\mathrm{f}(\mathrm{n})\) is \(\mathrm{O}(\mathrm{g}(\mathrm{n}))\) if \(\mathrm{f}(\mathrm{n}) \leq \mathrm{cg}(\mathrm{n})\) for all \(\mathrm{n} \geq \mathrm{n}_{0}\)
    So O gives an upper bound
\(\mathrm{f}(\mathrm{n})\) is \(\Omega\left(\mathrm{g}(\mathrm{n})\right.\) ) if \(\mathrm{f}(\mathrm{n}) \geq \mathrm{cg}(\mathrm{n})\) for all \(\mathrm{n} \geq \mathrm{n}_{0}\)
    So \(\Omega\) gives a lower bound
\(f(n)\) is \(\theta(g(n))\) if \(c_{1} g(n) \leq f(n) \leq c_{2} g(n)\) for all \(n \geq n_{0}\)
    So \(\theta\) gives a tight bound
    \(\mathrm{f}(\mathrm{n})\) is \(\theta(\mathrm{g}(\mathrm{n})\) ) if it is both \(\mathrm{O}(\mathrm{g}(\mathrm{n})\) ) and \(\Omega(\mathrm{g}(\mathrm{n}))\)
```


Can we do even better?

Tune in next time for the exciting conclusion!

