
Maximum Contiguous Subsequence Sum

After today’s class you will be able to:
state and solve the MCSS problem on small arrays by observation
find the exact runtimes of the naive MCSS algorithms

https://openclipart.org/image/2400px/svg_to_png/169467/bow_tie.png

Q1-3,
4a

} Homework 1 due tonight
◦ Lots of help available today if still working.

Instructors, Lab TAs, CampusWire

} WarmUpAndStretching due after next class
◦ Iterators? Read code comments, or Weiss Ch. 1-4.

} Reading for Day 4: Why Math?

} Finish up big-O, so you can
◦ explain the meaning of big-O, big-Omega (W), and

big-Theta (Θ)
◦ apply the definition of big-O to asymptotically

analyze functions, and running time of algorithms

} Analyze algorithms for a sample problem,
Maximum Contiguous Subsequence Sum
(MCSS), so you can
◦ state and solve the MCSS problem on small arrays by

observation
◦ find the exact runtimes of the naive MCSS algorithms

Big-O
Big-Omega
Big-Theta

} f(n) is O(g(n)) if there exist c, n0 such that:
f(n) ≤ cg(n) for all n ≥ n0

◦ So big-Oh (O) gives an upper bound

} f(n) is W(g(n)) if there exist c, n0 such that:
f(n) ≥ cg(n) for all n ≥ n0

◦ So big-omega (W) gives a lower bound

} f(n) is Θ(g(n)) if it is both O(g(n)) and W(g(n))
Or equivalently:

} f(n) is Θ(g(n)) if there exist c1, c2, n0 such that:
c1g(n) ≤ f(n) ≤ c2g(n) for all n ≥ n0

◦ So big-theta (Θ) gives a tight bound

Q4-5

} Give tightest bound you can
◦ Saying 3n + 2 is O(n3) is true*, but not as precise as

saying it’s O(n)
◦ *When we ask for true/false, use the definitions.
◦ And when analyzing code, we’ll just ask for Θ to be

clear.

} Simplify:
◦ You could also say: 3n + 2 is O(5n - 3log(n) + 17)
◦ And it would be technically correct…
◦ It would also be poor taste … and your grade will

reflect that.

} By definition, applied to functions.
“f(n) = n2/2 + n/2 – 1 is Θ(n2)”

} Can also be applied to an algorithm, referencing its
running time: e.g., when f(n) describes the number of
executions of the most-executed line of code.

“selection sort is Θ(n2)”

} Finally, can be applied to a problem, referencing its
complexity: the running time of the best algorithm that
solves it.

“The sorting problem is O(n2)”

} There are times when one might choose a
higher-order algorithm over a lower-order
one.

} Brainstorm some ideas to share with the class

C.A.R. Hoare, inventor of quicksort, wrote:
Premature optimization is the root of all evil.

Q6

Next week’s programming
assignment is with a partner

} No prima donnas
◦ Working way ahead, finishing on your own, or

changing the team’s work without discussion:
� harms the education of your teammates

} No laggards
◦ Coasting by on your team’s work:
� harms your education

} Both extremes
� are selfish
� may result in a failing grade for you on the project

} We’ll assign an overall grade to the project
} Grades of individuals will be adjusted up or

down based on team members’ assessments

} At the end of the project each of you will:
◦ Rate each member of the team, including yourself
◦ Write a short Performance Evaluation of each team

member with evidence that backs up the rating
� Positives
� Key negatives

Excellent—Consistently did what he/she was supposed to do, very well
prepared and cooperative, actively helped teammate to carry fair
share of the load

Very good—Consistently did what he/she was supposed to do, very
well prepared and cooperative

Satisfactory—Usually did what he/she was supposed to do, acceptably
prepared and cooperative

Ordinary—Often did what he/she was supposed to do, minimally
prepared and cooperative

Marginal—Sometimes failed to show up or complete tasks, rarely
prepared

Deficient—Often failed to show up or complete tasks, rarely prepared
Unsatisfactory—Consistently failed to show up or complete tasks,

unprepared
Superficial—Practically no participation
No show—No participation at all

A deceptively deep problem
with a surprising solution.

{-3, 4, 2, 1, -8, -6, 4, 5, -2}

} Problem: Given a sequence of numbers, find
the maximum sum of a contiguous
subsequence.

} Why study?
} Positives and negatives make it interesting.

Consider:
◦ What if all the numbers were positive?
◦ What if they all were negative?
◦ What if we left out “contiguous”?

} Analysis of obvious solution is neat
} We can make it more efficient later.

Q7-10

} Problem definition: given a nonempty sequence
of n (possibly negative) integers 𝐴!, 𝐴", 𝐴#, … , 𝐴$%",
find the maximum contiguous subsequence

𝑆&,(=&
)*&

(

𝐴)

and the corresponding values of 𝑖 and 𝑗.

} Quiz questions:
◦ In {-2, 11, -4, 13, -5, 2}, S1,3 = ?
◦ In {1, -3, 4, -2, -1, 6}, what is MCSS?
◦ If every element is negative, what’s the MCSS?

◦ Must be easy to explain
◦ Correctness is KING. Efficiency doesn’t matter yet.
◦ 3 minutes

} Examples to consider:
◦ {-3, 4, 2, 1, -8, -6, 4, 5, -2}
◦ {5, 6, -3, 2, 8, 4, -12, 7, 2}

Q11

Where
will this
algorithm
spend the
most
time?

How many times
(exactly, as a function of
N = a.length) will that
statement execute?

i: beginning of
subsequence

j: end of
subsequence

k: steps through
each element of
subsequence

Find the sums of
all subsequences

} What statement is executed the most often?
} How many times?

Q12

for(int i = 0; i < a.length; i++) {
for(int j = i; j < a.length; j++) {

int thisSum = 0;
for (int k = i; k <= j; k++) {

thisSum += a[k];
}
// update max if thisSum is better

}
}

} We showed MCSS is O(n3).
◦ Showing that a problem is O(g(n)) is relatively easy – just

analyze a known algorithm.

} Is MCSS W(n3)?
◦ Showing that a problem is W (g(n)) is much tougher. How do

you prove that it is impossible to solve a problem more
quickly than you already can?

◦ Or maybe we can find
a faster algorithm?

for(int i = 0; i < a.length; i++) {
for(int j = i; j < a.length; j++) {

int thisSum = 0;
for (int k = i; k <= j; k++) {

thisSum += a[k];
}
// update max if thisSum is better

}
}

} The performance is bad!

This is Θ(?)

for(int i = 0; i < a.length; i++) {
int thisSum = 0;
for(int j = i; j < a.length; j++) {

thisSum += a[j];
// update max if thisSum is better

}
}

} Remember the previous sum so we don’t have to recompute it!

} Is MCSS W(n2)?
◦ Showing that a problem is W (g(n)) is much tougher. How do

you prove that it is impossible to solve a problem more
quickly than you already can?

◦ Can we find a yet faster algorithm?

Tune in next time for the
exciting conclusion!

Q14-15

