
Abstract Data Types
Data Structure “Grand Tour”

Java Collections

http://gcc.gnu.org/onlinedocs/libstdc++/images/pbds_different_underlying_dss_1.png

} Stacks and Queues
◦ Ideally, you have met with your partner to start
◦ Try your best to work well together, even if you

have different amounts of programming
experience.
Suggestion: Let the weaker programmer do most of
the driving

} Finish day 4 + quiz with instructor if needed.

} Exam 1: next Thursday, 7–9pm. More info
next class.

} From question 3:
Suppose T1(N) is O(f(N)) and T2(N) is O(f(N)).
Prove that T1(N) + T2(N) is O(f(N)) or give a counter-example.

◦ Hint: Supposing T1(N) and T2(N) are O(f(N)), that means
there exist constants c1, c2, n1, n2, such that………
◦ How can you use these constants?

} What about the similar question for T1(N) - T2(N)?
◦ Remember, O isn’t a tight bound.
◦ Make sure to read the hints on the assignment webpage

} explain what an Abstract Data Type (ADT) is
} List examples of ADTs in the Collections

framework (from HW2 #1)
} List examples of data structures that

implement the ADTs in the Collections
framework

} Choose an ADT and data structure to solve a
problem

◦ “What is this data, and how does it work?”
◦ Primitive types (int, double): hardware-based
◦ Objects (such as java.math.BigInteger): require

software interpretation
◦ Composite types (int[]): software + hardware

} A mathematical model of a data type

} Specifies:
◦ The type of data stored (but not how it’s stored)
◦ The operations supported
◦ Argument types and return types of these operations

(but not how they are implemented)

} Three basic operations:
◦ isEmpty
◦ push
◦ pop

} Derived operations include peek (a.k.a. top)
◦ How could we write it in terms of the basic

operations?
◦ We could have peek be a basic operation instead.
◦ Advantages of each approach?

} Possible implementations:
◦ Use a linked list.
◦ Use a growable array.
◦ Last time, we talked about implementation details

for each.

Specification
“what can it do?”

Implementation:
“How is it built?”

Application:
“how can you use it?”

CSSE220
CSSE230

} List
◦ Array List
◦ Linked List

} Stack
} Queue
} Set
◦ Tree Set
◦ Hash Set
◦ Linked Hash Set

} Map
◦ Tree Map
◦ Hash Map

} Priority Queue

Underlying data
structures for many

Array
Tree

Implementations for almost all
of these* are provided by the
Java Collections Framework in
the java.util package.

Reminder: Available, efficient, bug-
free implementations of many key

data structures

Most classes are in java.util

You started this in HW2
#1; Weiss Chapter 6 has
more details

} Size must be declared when the
array is constructed

} Can look up or store items by index
Example:

nums[i+1] = nums[i] + 2;

} How is this done?

a[0]

a[1]

a[2]

a[i]

a[N-2]

a[N-1]

La

} A list is an indexed collection where elements
may be added anywhere, and any elements
may be deleted or replaced.

} Accessed by index
} Implementations:
◦ ArrayList
◦ LinkedList

Operations Provided ArrayList
Efficiency

LinkedList
Efficiency

Random access O(1) O(n)
Add/remove at end amortized O(1),

worst O(n)
O(1)

Add/remove at
iterator location

O(n) O(1)

A0 A1 A2 A3 A4 ArrayList

} A last-in, first-out (LIFO)
data structure

} Real-world stacks
◦ Plate dispensers in

the cafeteria
◦ Pancakes!

} Some uses:
◦ Tracking paths through a maze
◦ Providing “unlimited undo” in an application

} java.util.Stack uses LinkedList implementation
Operations
Provided

Efficiency

Push item O(1)
Pop item O(1)

Implemented by
Stack, LinkedList,
and ArrayDeque in
Java

} first-in, first-out
(FIFO)
data structure

} Real-world queues
◦ Waiting line at

the BMV
◦ Character on Star Trek TNG

} Some uses:
◦ Scheduling access to shared resource (e.g., printer)
Operations
Provided

Efficiency

Enqueue item O(1)
Dequeue item O(1)

Implemented by
LinkedList and
ArrayDeque in
Java

} A collection of items without duplicates (in
general, order does not matter)
◦ If a and b are both in set, then !a.equals(b)

} Real-world sets:
◦ Students
◦ Collectibles

} One possible use:
◦ Quickly checking if an

item is in a collection
Operations HashSet TreeSet
Add/remove item amort. O(1),

worst O(n)
O(log n)

Contains? O(1) O(log n)
Sorts items!

Example from 220

} Associate keys with values
} Real-world “maps”
◦ Dictionary
◦ Phone book

} Some uses:
◦ Associating student ID with transcript
◦ Associating name with high scores

Operations HashMap TreeMap
Insert key-value pair amort. O(1),

worst O(n)
O(log n)

Look up the value
associated with a given key

O(1) O(log n)

Sorts items by key!

How is a TreeMap like a TreeSet?
How is it different?

} Each item stored has an associated priority
◦ Only item with “minimum” priority is accessible
◦ Operations: insert, findMin, deleteMin

} Real-world “priority queue”:
◦ Airport ticketing counter

} Some uses
◦ Simulations
◦ Scheduling in an OS
◦ Huffman coding

Not like regular
queues!

Operations
Provided

Efficiency

Insert/
Delete Min

amort. O(log n),
worst O(n)

Find Min O(1)

Assumes a binary heap
implementation.

The version in Warm Up
and Stretching isn’t this

efficient.

} Collection of nodes
◦ One specialized node is the root.
◦ A node has one parent (unless it is the root)
◦ A node has zero or more children.

} Real-world “trees”:
◦ Organizational hierarchies
◦ Some family trees

} Some uses:
◦ Directory structure

on a hard drive
◦ Sorted collections

Operations
Provided

Efficiency

Find O(log n)
Add/remove O(log n)

Only if tree is
“balanced”

} A collection of nodes and edges
◦ Each edge joins two nodes
◦ Edges can be directed or undirected

} Real-world “graph”:
◦ Road map

} Some uses:
◦ Tracking links between web pages
◦ Facebook

Operations
Provided

Efficiency

Find O(n)
Add/remove O(1) or O(n) or O(n2)

Depends on
implementation

(time/space trade off)

} Graph whose edges have numeric labels
} Examples (labels):
◦ Road map (mileage)
◦ Airline's flight map (flying time)
◦ Plumbing system (gallons per minute)
◦ Computer network (bits/second)

} Famous problems:
◦ Shortest path
◦ Maximum flow
◦ Minimal spanning tree
◦ Traveling salesman
◦ Four-coloring problem for planar graphs

} Array
} List
◦ Array List
◦ Linked List

} Stack
} Queue
} Set
◦ Tree Set
◦ Hash Set

} Map
◦ Tree Map
◦ Hash Map

} Priority Queue
} Tree
} Graph

We’ll implement and use nearly
all of these, some multiple ways.
And a few other data structures.

Structure find insert/remove Comments
Array O(n) can't do it Constant-time access by position
Stack top only

O(1)
top only
O(1)

Easy to implement as an array.

Queue front only
O(1)

O(1) insert rear, remove front.

ArrayList O(N)
O(log N) if
sorted

O(N) Constant-time access by position
Add at end: am. O(1), worst O(N)

Linked List O(N) O(1) O(N) to find insertion position.
HashSet/Map O(1) amort. O(1),

worst O(N)
Not traversable in sorted order

TreeSet/Map O(log N) O(log N) Traversable in sorted order
PriorityQueue O(1) O(log N) Can only find/remove smallest
Search Tree O(log N) O(log N) If tree is balanced, O(N) otherwise

*Some of these are amortized, not worst-case.

} Which ADT to use?
◦ It depends. How do you access your data? By

position? By key? Do you need to iterate through it?
Do you need the min/max?

} Which implementation to use?
◦ It also depends. How important is fast access vs

fast add/remove? Does the data need to be ordered
in any way? How much space do you have?

} But real life is often messier…

Q1-9

} Use Java’s Collections Framework.
◦ Search for Java 8 Collection
◦ With a partner, read the javadocs to answer the quiz

questions. You only need to submit one quiz per
pair. (Put both names at top)

} If you finish, you may work on your current
CSSE230 assignments

