CSSE 230 Day 2

Growable Arrays Continued
Big-O notation

Submit Growable Array exercise

Agenda and goals

» Growable Array recap
» Big—-Oh definition

» After today, you’ll be able to
- Use the term amortized appropriately in analysis
- State the formal definition of big—-Oh notation

QI1-5
Announcements

» All should do piazza introduction post (a
few students left)

» Turn in the GrowableArray exercise now.

» Quiz problems 1-5. Do on your own, then
compare with a neighbor.

You must demonstrate programming
competence on exams to succeed

» See syllabus for exam weighting and caveats.
» Evening exams (Thu Week 3, Wed Week 8)

» Think of every program you write as a
practice test
- For example, HW4 - Exam 2

Properties of Logarithms &
Exponentials

Properties of logarithmic Properties of exponential
functions functions
logp(xy) = logy(x) + logp(y) alb*®) = gPq®
lOQb(x/y) = logp(x) — logy(y) ab¢ = (ab)c
logy(x®) = alogy(x) a’/ o= q®=o
logp(x) = ;Zﬁig% b = q'©9a(d)

c _— ,cxlogy(b)
qlegp(m) — ,logp(a) b” = a

Q2-3
Questions?

» About Homework 17

- Aim to complete ASAP, since it is due after next
class

> It is substantial
- The last problem (the table) is worth lots of points!

» About the Syllabus?

Warm Up and Stretching thoughts

- Short but intense! ~50 lines of code total in our
solutions

- Be sure to read the description of how it will be
graded. Note how style will be graded.

- Demo: Use Git to check out the project

- Demo: Running the JUnit tests for test, file,
package, and project

Iterative Code Analysis Examples

How many times does sum++ run?

for (1 = 4; 1 < n; 1i++)
for (3 = 0; j <= n; Jj++)
sum++;

Why is this one so easy?

What if inner were for (3 = 0; § <= 1i; J++) ?

Iterative Code Analysis Examples

How many times does sum++ run?

for (1 = 1; 1 <= n; 1 *= 2)

sum+-+,;

Be precise, using floor/ceiling as needed, to get full
credit.

Worst-case vs amortized cost for adding an
element to an array using the doubling scheme

Worst-case:
O(n)

o
O(1)

Note: amortized is not the same as average case!

« average case: averaged over input domain.

« amortized cost: per-operation cost when
undergoing a seguence of operations.

Q6-7
Conclusions

» What’s the amortized and worst-case costs of adding an
additional string...

> in the doubling strategy?
> in the add-one strategy?

» For which strategy is amortized analysis meaningful?

- “When ...a worst-case bound for a sequence of operations is better than
the corresponding bound obtained by considering each operation
separately and can be spread evenly to each operation in the sequence...”
—Weiss, p.845

> |.e., when amortized runtime is better than worst-case runtime

» Are there any hypothetical cases where we would prefer the
slower strategy?

Running Times

» Algorithms may have different time
complexity on different data sets

» W
» W
» W

nat do we mean by "Worst Case™?
nat do we mean by "Average Case"?

nat are some application domains where

knowing the Worst Case time complexity
would be important?

4

http://cacm.acm.org/magazines/2013/2/160173-the-tail-at-scale/fulltext

Average Case and Worst Case

waorst-case

SITIS O NN N N N B BN BN N .

4 ms
average-case

-

Ims
- bDesl-case

2 ms

Running Time

| ms

A B C D E F G
[nput Instance

Note: amortized is not the same as average case!

« average case: averaged over /mput domain. "Expected runtime’

« amortized cost: per-operation cost when undergoing a seguence of
operations. "Guaranteed runtime, when amortized to a per-operation basis”

Asymptotic Analysis

» Rule of thumb: we only care what happens as
N (input size) gets large

» Is the runtime linear? quadratic? exponential?
in N

Figure 5.1

Running times for small inputs

10 i I i i I i i i
Linear
O(Nlog N)
8 r Quadratic 7
Cubic

Running Time (milliseconds)

0 | | | 1 | | I | 1
10 20 30 40 50 60 70 80 90 100

Input Size (N)

Data Structures & Problem Solving using JAVA/2E ~ Mark Allen Weiss © 2002 Addison Wesley

Figure 5.2

Running times for moderate inputs

Running Time (seconds)

0.8

0.6

0.4

0.2

| | |

Linear

O(Nlog N)
Quadratic

Cubic

.

|

0 1000

2000

3000

4000 5000 6000 7000 8000

Input Size (N)

9000 10000

Data Structures & Problem Solving using JAVA/2E

Mark Allen Weiss

© 2002 Addison Wesley

Figure 5.3

Functions in order of increasing growth rate

FUNCTION NAME

¢ -onstant The answer to most big-O
log N Logarithmic guestions is one of these
log 2N Log-squared functions

N Linear

Nlog N N log N a.k.a "log linear"

N2 Quadratic

N? Cubic

2N Exponential

Data Structures & Problem Solving using JAVA/2E ~ Mark Allen Weiss © 2002 Addison Wesley

Simple Rule for Big-O (informal)

» Drop lower order terms and constant factors
» 7n - 3 is O(n)

» 8n4logn + 5n2 + n is O(n?logn)

Q8
Formal Definition of Big-0O

» Given functions f(n) and g(n), we say that f(n) is O(g(n)) if and
only if there exist constants ¢ > 0 and ny = 0 such that

f(n) < c g(n) for all n = n,.

» For this to make sense, f(n) and g(n) should be functions over
non-negative integers, and f(n), g(n) > 0 on this range.

More formally:
“f(n) is in O(g(n))”.

Running Time

O(g(n)) is actually a set
(of what?)

Input Size

Q9-10
Proving a Big-0 relationship

» f(n) is O(g(n)) if there exist two positive constants ¢
and n, such that f(n) < c g(n) for all n > n,.

» Q: How to prove that f(n) is O(g(n))?
A: Give c and n, and show the condition holds.

» Ex1: f(n) = 4n + 15. g(n) = 7?2?
» Ex2: f(n) = 5n?2 +2n-4. g(n) = ?7?

