

CSSE 230 Day 2

Growable Arrays Continued Big-O notation

Submit Growable Array exercise

Agenda and goals

- Growable Array recap
- Big–Oh definition
- After today, you'll be able to
 - Use the term *amortized* appropriately in analysis
 - State the formal definition of big-Oh notation

Announcements

- All should do piazza introduction post (a few students left)
- Turn in the GrowableArray exercise now.
- Quiz problems 1-5. Do on your own, then compare with a neighbor.

You must demonstrate programming competence on exams to succeed

- See syllabus for exam weighting and caveats.
- Evening exams (Thu Week 3, Wed Week 8)
- Think of every program you write as a practice test
 - For example, HW4 \rightarrow Exam 2

Properties of Logarithms & Exponentials

Properties of logarithmic functions

$$log_{b}(xy) = log_{b}(x) + log_{b}(y)$$
$$log_{b}(x/y) = log_{b}(x) - log_{b}(y)$$
$$log_{b}(x^{\alpha}) = \alpha \log_{b}(x)$$

Properties of exponential functions

$$a^{(b+c)} = a^b a^c$$

$$a^{bc} = \left(a^b\right)^c$$

$$\frac{a^b}{a^c} = \frac{a^{(b-c)}}{a^c}$$

$$b = a^{\log_a(b)}$$

$$b^c = a^{c*log_a(b)}$$

 $a^{\log_b(n)} = n^{\log_b(a)}$

 $log_b(x) = \frac{log_a(x)}{log_a(b)}$

Questions?

- About Homework 1?
 - Aim to complete ASAP, since it is due after next class
 - It is substantial
 - The last problem (the table) is worth lots of points!
- About the Syllabus?

Warm Up and Stretching thoughts

- Short but intense! ~50 lines of code total in our solutions
- Be sure to read the description of how it will be graded. Note how style will be graded.
- **Demo:** Use Git to check out the project
- Demo: Running the JUnit tests for test, file, package, and project

Iterative Code Analysis Examples

How many times does sum++ run?

Why is this one so easy?

What if inner were for $(j = 0; j \le i; j++)$?

Iterative Code Analysis Examples

How many times does sum++ run?

Be precise, using floor/ceiling as needed, to get full credit.

Growable Arrays Exercise Solution

Worst-case vs amortized cost for adding an element to an array using the doubling scheme

Q6-7

Conclusions

- What's the amortized and worst-case costs of adding an additional string...
 - in the doubling strategy?
 - o in the add-one strategy?
- For which strategy is amortized analysis meaningful?
 - "When ...a worst-case bound for a sequence of operations is better than the corresponding bound obtained by considering each operation separately and can be spread evenly to each operation in the sequence..." —Weiss, p.845
 - I.e., when amortized runtime is better than worst-case runtime
- Are there any hypothetical cases where we would prefer the slower strategy?

Algorithm Analysis: Running Time

Running Times

- Algorithms may have different *time* complexity on different data sets
- What do we mean by "Worst Case"?
- What do we mean by "Average Case"?
- What are some application domains where knowing the Worst Case time complexity would be important?
- http://cacm.acm.org/magazines/2013/2/160173-the-tailat-scale/fulltext

Average Case and Worst Case

Note: amortized is not the same as average case!

- average case: averaged over input domain. "Expected runtime"
- amortized cost: per-operation cost when undergoing a sequence of operations. "Guaranteed runtime, when amortized to a per-operation basis"

Notation for Asymptotic Analysis

Big-O

Asymptotic Analysis

- Rule of thumb: we only care what happens as N (input size) gets large
- Is the runtime linear? quadratic? exponential? in N

Figure 5.1 Running times for small inputs

Figure 5.2

Running times for moderate inputs

Figure 5.3 Functions in order of increasing growth rate

Function	Name	
с	Constant	The answer to most big-O
$\log N$	Logarithmic	questions is one of these
$\log^2 N$	Log-squared	functions
Ν	Linear	
$N \log N$	N log N	a.k.a "log linear"
N^2	Quadratic	
N ³	Cubic	
2 ^N	Exponential	

Simple Rule for Big-O (informal)

Drop lower order terms and constant factors

7n – 3 is O(n)

8n²logn + 5n² + n is O(n²logn)

Formal Definition of Big-O

- Given functions f(n) and g(n), we say that f(n) is O(g(n)) if and only if there exist constants c > 0 and n₀ ≥ 0 such that
 f(n) ≤ c g(n) for all n ≥ n₀.
- For this to make sense, f(n) and g(n) should be functions over non-negative integers, and f(n), g(n) ≥ 0 on this range.

More formally: "f(n) is **in** O(g(n))".

O(g(n)) is actually a *set* (of what?)

Proving a Big-O relationship

- f(n) is O(g(n)) if there exist two positive constants c and n_0 such that f(n) $\leq c g(n)$ for all $n \geq n_0$.
- Q: How to prove that f(n) is O(g(n))?
 A: Give c and n₀ and show the condition holds.

• Ex1:
$$f(n) = 4n + 15$$
. $g(n) = ???$

• Ex2: $f(n) = 5n^2 + 2n - 4$. g(n) = ???