
CSSE 230 In-class exercise Day 1 Names ____________________ ____________________ Section _______

GrowableArrays activity.
Work with a partner. If an odd number of students are present, one group may have three people.

This activity deals with the overhead of adding many elements to a “growable array” data structure, under different
growing strategies:

(A) “Add-one” strategy: [new capacity] = [old capacity] + 1
(B) “Doubling” strategy: [new capacity] = 2 * [old capacity]

Code for these strategies is given on the second page.

Let N be the total number (called NUM_TO_ADD in the code) of items that are added to a growable array that is initially
empty with a capacity of 4. For simplicity, assume N is one more than a power of 2: say, N–1 = 2k for some number k.

1. In the table, tally the number of writes to the array that happen when the ith element is added to the array, where
i ranges from 0 to N–1. A few are completed for you.

i (A) #writes (B) #writes

0 1 1

1 1 1
2 1 1

3 1 1

4 1+4 1+4
5 1+5 1

6

7
8

9

10
11

12

13
14

15

16
17

…

N–2
N–1

2. Over the N adds, what is the total number of writes for strategy (A)?
Your answer should be in closed form (no sum notation).

3. Over the N adds, what is the total number of writes for strategy (B)?
Your answer should be a closed-form function of N only.

4. Consider your answers from problems 2 and 3 as the “total cost of adding N items” under each strategy. What
then is the amortized cost of adding a single item… [Hint: divide your previous answers by N]

for the add-one strategy (A)? for the doubling strategy (B)?

5. For which strategy does the Big-O amortized cost differ from the Big-O worst-case cost of an add? Explain.

6. Is there ever a situation where the add-one strategy might be preferable to the doubling strategy? Explain.

public class GrowableArray {
 int[] array;
 int size;
 int capacity;
 static final int INITIAL_CAPACITY = 5;

 GrowableArray() {
 this.capacity = INITIAL_CAPACITY;
 this.array = new int[this.capacity];
 this.size = 0;
 }

 public void addToEnd(int item) {
 if (size == capacity) {
 // Use one of the following lines:
 resize(capacity + 1); // (A) resize by add-one strategy
 // OR
// resize(2 * capacity); // (B) resize by doubling strategy
 }
 this.array[size] = item;
 size++;
 }

 private void resize(int newCap) {
 int[] newArray = new int[newCap];
 for (int i = 0; i < this.size; i++) {
 newArray[i] = this.array[i];
 }
 this.array = newArray;
 this.capacity = newCap;
 }

 // Main method for testing basic functionality.
 public static void main(String[] args) {
 int NUM_TO_ADD = 10000;
 GrowableArray ga = new GrowableArray();
 for (int i = 0; i < NUM_TO_ADD; i++) {
 ga.addToEnd(i);
 }
 }
}

