CSSE 230 Hash table basics

How can hash tables perform both **contains()** in O(1) time and **add()** in amortized O(1) time, given enough space?

Hashing

Efficiently putting 5 pounds of data in a 20 pound bag

Reminder: sets hold unique items

- Implementation choices:
 - TreeSet (and TreeMap) uses a balanced tree: O(log n)
 - Uses a red-black tree
 - HashSet (and HashMap) uses a hash table: amortized
 O(1) time
- Related: maps allow insertion, retrieval, and deletion of items by key:
 - Since keys are unique, they form a set.
 - The values just go along for the ride.
 - We'll focus on sets.

Big ideas of hash tables

- The underlying storage?
 Growable array
- Calculate the index to store an item based on the item itself. How? Hashcode. Fast but un-ordered.
- 3. What if that location is already occupied with another item?
 Collision. Two approaches to resolve this

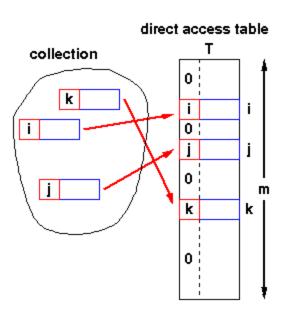
HashMap<K,V> - Method Summary (some, not all)

```
void clear()
boolean containsKey(Object key)
V get(Object key)
boolean isEmpty()
V put(K key, V value)
V remove(Object key)
V replace(K key, V value)
int size()
```

A hash table provides fast set operations

- Insertion and lookup in amortized O(1) time!
- Need two things:
 - A good "hash function"
 - A large enough storage array
- Doesn't keep items ordered
 - So NOT for sorted data
 - So finding the maximum element is very slow.

Direct Address Tables



- Array of size m
- n elements with unique keys
- Key values in range [0,k)
- If $n \le m$ and k < m, then use the key as an array index.
 - Clearly O(1) lookup of keys

Issues?

- Keys must be unique.
- Often the range of potential keys is much larger than the storage we want for an array
 - Example: RHIT student IDs vs. # Rose students

When Direct Address Tables are not feasible ...

Three step process used for accessing hash tables:

- 1. Transform *key* into an integer *X*
- 2. Use a calculation on X to generate a natural number Y in the range [0..m-1]
- 3. Use *Y* to index into the hash table array, i.e., hTable[Y]
- Step #1 is handled by Java's hashCode() method
- Step #2's m is the size of the hash table array
- Step #2 is often implemented by: $Y = X \mod m$
 - Using mod operation is called the 'Division Method'
 - 'Multiplication Methods' also exist

Javadoc prototype for Object's hashCode() method:

int hashCode()

Returns a hash code value for the object

We attempt to create unique keys by applying a .hashCode() function ...

Required property of Java's hashCode() method:

 Given x.equals(y), i.e., x is equal to y, then x.hashCode() = y.hashCode()

Desirable properties:

- Should be fast to calculate
- Should produce integers that have a nice uniform distribution

[&]quot;rose". hashCode()= 3506511

[&]quot;hulman".hashCode()= -1206158341 (can be negative if overflows)

[&]quot;institute". hashCode() = 36682261

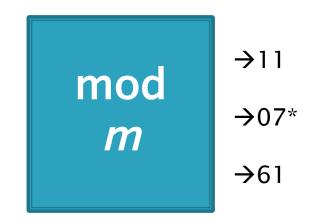
...and then take it mod the table size (m) to get an index into the array.

• Example: if m = 100:

```
hashCode("rose") = 3506511

hashCode("hulman") = -1206158341

hashCode("institute") = 36682261
```



- * Note: since the hashCode is an integer, it might be negative...
 - If it is negative, add Integer.MAX_VALUE + 1 to make it positive before you mod. (Same as ANDing with 0x7fffffff, or removing sign bit from two's complement)
 - This mimics what's actually done in practice: when m is a power of 2, say 2^k , we can just truncate, keeping the last k bits (instead of taking mod m). Sign bit is lost.

Index calculated from the object itself, not from 3-4 a comparison with other objects

How Java's hashCode() is used:

Unless this position is already occupied

a "collision"

Some hashCode() implementations

- Default if you inherit Object's: memory location (platform-specific, actually)
- Many JDK classes override hashCode()
 - Integer: the value itself
 - Double: XOR first 32 bits with last 32 bits
 - String: we'll see shortly!
 - Date, URL, ...
- Custom classes should override hashCode()
 - Use a combination of final fields.
 - If key is based on mutable field, then the hashcode will change and you will lose it!
 - Developers often use strings when feasible

A simple hashCode function for Strings is a function of every character

```
// This could be in the String class
public static int hash(String s) {
  int total = 0;
  for (int i = 0; i < s.length(); i++)
    total = total + s.charAt(i);
  return total;
}</pre>
```

- Advantages?
- Disadvantages?

A better hashCode function for Strings uses place value

```
// This could be in the String class
public static int hash(String s) {
  int total = 0;
  for (int i = 0; i < s.length(); i++)
    total = total*256 + s.charAt(i);
  return total;
}</pre>
```

- Spreads out the values more, and anagrams not an issue.
- What about overflow during computation?
 - What happens to first characters?

A better hashCode function for Strings uses place value with a base that's prime

```
// This could be in the String class
public static int hash(String s) {
  int total = 0;
  for (int i = 0; i < s.length(); i++)
    total = total*31 + s.charAt(i);
  return total;
}</pre>
```

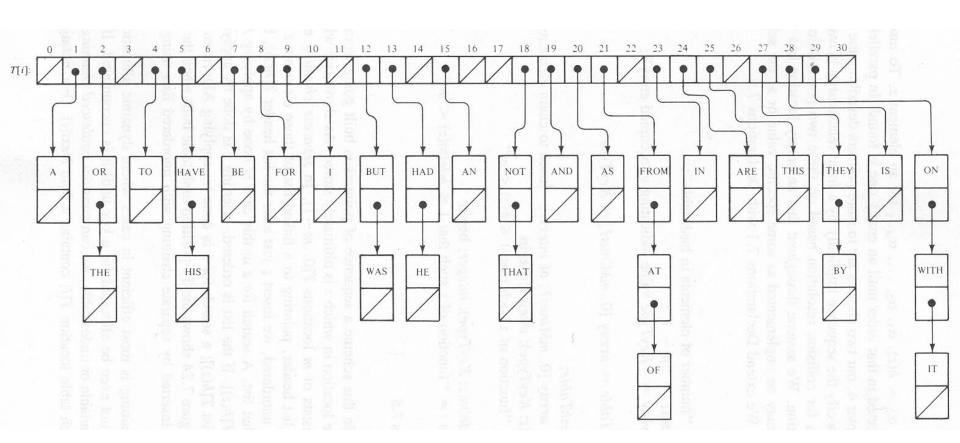
- Spread out, anagrams OK, overflow OK.
- This is String's hashCode() method.
- The (x = 31x + y) pattern is a good one to follow.
- See https://docs.oracle.com/javase/8/docs/api/java/lang/String.html#hashCode—

- A good hashCode operation distributes keys uniformly, but collisions will still happen
- ▶ hashCode() are ints \rightarrow only ~4 billion unique values.
 - How many 16 character ASCII strings are possible?
- If n is small, tables should be much smaller
 - mod will cause collisions too!
- Solutions:
 - Chaining
 - Probing (Linear, Quadratic)

Separate chaining: an array of linked lists

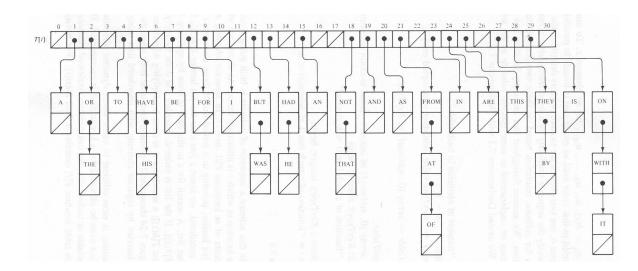
Grow in another direction

Examples: .get("at"), .get("him), (hashcode=18), .add("him"), .delete("with")



Java's **HashMap** uses chaining and a table size that is a power of 2.

Runtime of hashing with chaining depends on the load factor



m array slots, n items. Load factor, $\lambda = n/m$.

Runtime = $O(\lambda)$

Space-time trade-off

- 1. If m constant, then this is O(n). Why?
- 2. If keep m \sim 0.5n (by doubling), then this is amortized O(1). Why?

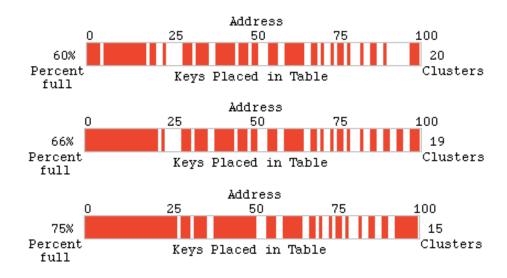
Alternative: Store collisions in other array slots.

- No need to grow in second direction
- No memory required for pointers
 - Historically, this was important!
 - Still is for some data...
- Will still need to keep load factor ($\lambda = n/m$) low or else collisions degrade performance
 - We'll grow the array again

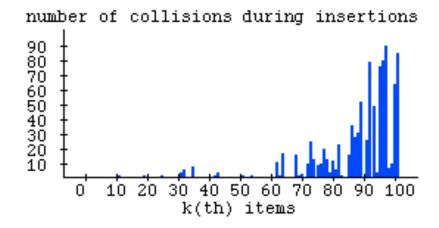
Collision Resolution: Linear Probing

- Probe H (see if it causes a collision)
- Collision? Also probe the next available space:
 - ∘ Try H, H+1, H+2, H+3, ...
 - Wraparound at the end of the array
- Example on board: .add() and .get()
- Problem: Clustering
- Animation:
 - http://www.cs.auckland.ac.nz/software/AlgAnim/hash_table s.html
 - Applet deprecated on most browsers, except Safari/Mac?
 - Moodle has a video captured from there
 - Or see next slide for a few freeze-frames.

Clustering Example



Collision Stats



After insert 89 After insert 18 After insert 49 After insert 58 After insert 9

Figure 20.4
Linear probing hash table after each insertion

Good example of clustering and wraparound

,	Allei iliseli os	Allei ilisell 10	Allei ilisell 43	Allei iliseli 30	Allei ilisell s
0			49	49	49
1				58	58
2					9
3					
4					
5					
6					
7					
8		18	18	18	18
9	89	89	89	89	89

Linear probing efficiency also depends on load factor, $\lambda = n/m$

For probing to work, $0 \le \lambda \le 1$.

For a given λ , what is the expected number of probes before an empty location is found?

Rough Analysis of Linear Probing

- Assume all locations are equally likely to be occupied, and equally likely to be the next one we look at.
- λ is the probability that a given cell is full, 1- λ the probability a given cell is empty.
- What's the expected number of probes?

$$\sum_{p=1}^{\infty} \lambda^{p-1} (1-\lambda) p = \frac{1}{1-\lambda} \qquad \qquad \begin{array}{l} \text{If } \lambda = 0.5 \\ \text{Then } \frac{1}{1-0.5} = 2 \end{array}$$

From https://en.wikipedia.org/wiki/List_of_mathematical_series:

$$\sum_{k=1}^n kz^k = zrac{1-(n+1)z^n+nz^{n+1}}{(1-z)^2}$$

Start Here for 2nd Day on Hashing

Better Analysis of Linear Probing

Clustering!

- Blocks of occupied cells are formed
- Any collision in a block makes the block bigger
- Two sources of collisions:
 - Identical hash values
 - Hash values that hit a cluster
- Actual average number of probes for large λ :

$$\frac{1}{2}\left(1+\frac{1}{(1-\lambda)^2}\right)$$

Why consider linear probing?

- Easy to implement
- Works well when load factor is low
 - In practice, once $\lambda > 0.5$, we usually **double the size** of the array and rehash
 - This is more efficient than letting the load factor get high
- Works well with caching

To reduce clustering, probe farther apart

- Reminder: Linear probing:
 - Collision at H? Try H, H+1, H+2, H+3,...
- New: Quadratic probing:
 - Collision at H? Try H, H+1². H+2², H+3², ...
 - Eliminates primary clustering. "Secondary clustering" isn't as problematic

Quadratic Probing works best with low λ and prime m

- Choose a prime number for the array size, m
- ▶ Then if $\lambda \leq 0.5$:
 - Guaranteed insertion
 - If there is a "hole", we'll find it
 - So no cell is probed twice
- Can show with m=17, H=6.

For a proof, see Theorem 20.4:

Suppose the table size is prime, and that we repeat a probe before trying more than half the slots in the table See that this leads to a contradiction

Quadratic Probing runs quickly if we implement it correctly

Use an algebraic trick to calculate next index

- Difference between successive probes yields:
 - Probe i location, $H_{i} = (H_{i-1} + 2i 1) \% M$
- 1. Just use bit shift to multiply i by 2
 - probeLoc = probeLoc + (i << 1) 1;
 ...faster than multiplication
- 2. Since i is at most M/2, can just check:
 - if (probeLoc >= M)probeLoc -= M;
 - ...faster than mod

When growing array, can't double!

Can use, e.g., BigInteger.nextProbablePrime()

Quadratic probing analysis

- No one has been able to analyze it!
- Experimental data shows that it works well
 - Provided that the array size is prime, and $\lambda < 0.5$

- If you are interested, you can do the optional HashSet exercise.
 - http://www.rose-hulman.edu/class/csse/csse230/201430/InClassExercises/
- This week's homework takes a couple questions from there.

Quadratic probing analysis

- No one has been able to analyze it!
- Experimental data shows that it works well
 - Provided that the array size is prime, and $\lambda < 0.5$

Summary:

Hash tables are fast for some operations

Structure	insert	Find value	Find max value
Unsorted array			
Sorted array			
Balanced BST			
Hash table			

- Finish the quiz.
- Then check your answers with the next slide

Answers:

Structure	insert	Find value	Find max value
Unsorted array	Amortized $\theta(1)$ Worst $\theta(n)$	θ(n)	θ(n)
Sorted array	$\theta(n)$	$\theta(\log n)$	θ(1)
Balanced BST	θ(log n)	$\theta(\log n)$	θ(log n)
Hash table	Amortized $\theta(1)$ Worst $\theta(n)$	θ(1)	θ(n)

In practice

- Constants matter!
- ▶ 727MB data, ~190M elements
 - Many inserts, followed by many finds
 - Microsoft's C++ STL

Structure	build (seconds)	Size (MB)	100k finds (seconds)
Hash map	22	6,150	24
Tree map	114	3,500	127
Sorted array	17	727	25

- Why?
- Sorted arrays are nice if they don't have to be updated frequently!
- Trees still nice when interleaved insert/find

Review: discuss with a partner

- Why use 31 and not 256 as a base in the String hash function?
- Consider chaining, linear probing, and quadratic probing.
 - What is the purpose of all of these?
 - For which can the load factor go over 1?
 - For which should the table size be prime to avoid probing the same cell twice?
 - For which is the table size a power of 2?
 - For which is clustering a major problem?
 - For which must we grow the array and rehash every element when the load factor is high?

Designers choose

- We have been presenting Java's implementation
- In Python's implementation, the designers made some different choices
 - Like using a variant of quadratic probing, not chaining.
 - and using a different prime base than 31 for the String hash function

Today's worktime

...is a great time to start StringHashSet while it's fresh

...is acceptable to use for EditorTrees Milestone 2 group worktime, especially if you have questions for me