

What is the min height of a tree with X external nodes?

CSSE 230

Sorting Lower Bound Radix Sort

Radix sort to the rescue ... sort of...

After today, you should be able to... ...explain why comparison-based sorts need at least O(n log n) time

- ... explain bucket sort
- ... explain radix sort
- ... explain the situations in which radix sort
- is faster than O(n log n)

Announcements

- SortingRaces is due Thursday. Tuesday's class time will be SortingRaces work time.
- The sounds of sorting. Radix sort later.
 - <u>https://www.youtube.com/watch?v=kPRA0W1kECg</u>

A Lower–Bound on Sorting Time

We can't do much better than what we already know how to do.

What's the best best case?

- Lower bound for best case?
- A particular algorithm that achieves this?

What's the best worst case?

- Want a function f(N) such that the worst case running time for all sorting algorithms is Ω(f(N))
- How do we get a handle on "all sorting algorithms"?

What are "all sorting algorithms"?

- We can't list all sorting algorithms and analyze all of them
 - Why not?
- But we can find a uniform representation of any sorting algorithm that is based on comparing elements of the array to each other

First of all...

- The problem of sorting N elements is at least as hard as determining their ordering
 - $\circ\,$ e.g., determining that $a_3 < a_4 < a_1 < a_0 < a_2$

0	1	2	3	4
58	55	73	5	10

sorting = determining order, then movement

 So any lower bound on all "orderdetermination" algorithms is also a lower bound on "all sorting algorithms"

Sort Decision Trees

- Let A be any comparison-based algorithm for sorting an array of distinct elements
- We can draw an EBT that corresponds to the comparisons that will be used by A to sort an array of N elements
 - This is called a sort decision tree
 - Internal nodes are comparisons
 - External nodes are orderings

• Different algorithms will have different trees

Insertion Sort

Basic idea:

 Think of the array as having a sorted part (at the beginning) and an unsorted part (the rest)

0	1	2	3	4	5	6	7	8	9
38	44	87	2033	99	1500	100	90	239	748
								4	

- Get the first value in the unsorted part
- Insert it into the correct location in the sorted part, moving larger values up to make room

Repeat until unsorted part is empty

Q2-4

So what?

- Minimum number of external nodes in a sort decision tree? (As a function of N)
- Is this number dependent on the algorithm?
- What's the height of the shortest EBT with that many external nodes?

$$\log N!] \approx N \log N - 1.44N = \Omega(N \log N)$$

No comparison-based sorting algorithm, known or not yet discovered, can **ever** do better than this!

An approximation for log (n!)

Use Stirling's approximation:

$$\ln n! = n \ln n - n + O(\ln(n))$$

http://en.wikipedia.org/wiki/Stirling%27s_approximation

Can we do better than N log N?

- Ω(N log N) is the best we can do if we compare items
- Can we sort without comparing items?

Yes, we can! We can avoid comparing items and Q5 still sort. This is fast if the range of data is small.

• Observation:

- For N items, if the range of data is less than N, then we have duplicates
- O(N) sort: Bucket sort
 - Works if possible values come from limited range and have a uniform distribution over the range
 - Example: Exam grades histogram
- A variation: Radix sort

Q6-7

Radix sort

- A picture is worth 10³ words, but an animation is worth 2¹⁰ pictures, so we will look at one.
- http://www.cs.auckland.ac.nz/software/AlgAnim /radixsort.html (good but blocked)
- <u>https://www.youtube.com/watch?v=xuU-DS_5Z4g&src_vid=4S1L-pyQm7Y&feature=iv&annotation_id=annotation_133993417</u> (video, good basic idea, distracting zooms)
- <u>http://www.cs.usfca.edu/~galles/visualization/R</u> <u>adixSort.html</u> (good, uses single array)

Q8-10

RadixSort is almost O(n)

- It is O(kn)
 - Looking back at the radix sort algorithm, what is k?
- Look at some extreme cases:
 - If all integers in range 0-99 (so, many duplicates if N is large), then k = _____
 - $\circ\,$ If all N integers are distinct, k = ____

Radix sort example: card sorter

012345679.0 ABCORPORT STATEMENT PORT TOWONT о**г**ист. - /81*-Diev 40 mmmm Boy 11 mmm 00 11 3232313 (ba332323) ba332 ba3323233 (ba33232) ba33232 (ba332323) ba3323232333 (ba3323232333) สงสมสรร]|สงสรรรรรร]|สรรรรรร]|สรรรรรร]|สรรรรร]|สรรรรร]|สรรรรร]|ได้สรรรรรรรรรรรรรรร

Used an appropriate combo of mechanical, digital, and human effort to get the job done.

Type 82 Electric Punched Card Sorting Machine