CSSE 230

Extended Binary Trees Recurrence relations

After today, you should be able to...
...explain what an extended binary tree is
...solve simple recurrences using patterns

Reminders/Announcements

- Today:
- Extended Binary Trees (on HW10)
- Recurrence relations, part 1
- GraphSurfing Milestone 2
- Two additional methods: shortestPath(T start, T end) and stronglyConnectedComponent(T key)
- Tests on Living People subgraph of Wikipedia hyperlinks graph
- Bonus problem: find a "challenge pair"
- Pair with as-long-as-possible shortest path

Extended Binary Trees (EBTs)

Bringing new life to Null nodes!

An Extended Binary Tree (EBT) just has

- Not a single NULL_NODE, but many NULL_NODEs
- An Extended Binary tree is either

- an external (null) node, or
- an (internal) root node and two EBTs T_{L} and T_{R}, that is, all nodes have 2 children
- Convention.
- Internal nodes are circles
- External nodes are squares
- This is simply an alternative way of viewing binary trees: external nodes are "places" where a search can end or an element can be inserted - for a BST, what legal values could eventually be inserted at an external node?

A property of EBTs

- Property $P(N)$: For any $N \geq 0$, any EBT with N internal nodes has ______ external nodes.
- Use example trees below to come up with a formula, let:
- EN(T) = external nodes
- $\operatorname{IN}(T)=$ internal nodes

A property of EBTs

- Property $P(N)$: For any $N \geq 0$, any EBT with N internal nodes has ______ external nodes.
- Prove by strong induction, based on the recursive definition.
- A notation for this problem: $\operatorname{IN}(T), \operatorname{EN}(T)$

Hint (reminder): Find a way to relate the properties for larger trees to the property for smaller trees.

Introduction to Recurrence Relations

A technique for analyzing recursive algorithms

Recap: Maximum Contiguous Subsequence Sum problem

Problem definition: Given a non-empty sequence of n (possibly negative) integers $A_{1}, A_{2}, \ldots, A_{n}$, find the maximum consecutive subsequence $S_{i, j}=\sum_{k=i}^{j} A_{k}$, and the corresponding values of i and j.

1
A
:---:
13

Chapter 4 - Cormen 3e maximum subarray

Divide and Conquer Approach

- Split the sequence in half
- Where can the maximum subsequence appear?
- Three possibilities :
- entirely in the first half,
- entirely in the second half, or
- begins in the first half and ends in the second half

This leads to a recursive algorithm

1. Using recursion, find the maximum sum of first half of sequence
2. Using recursion, find the maximum sum of second half of sequence
3. Compute the max of all sums that begin in the first half and end in the second half

- (Use a couple of loops for this)

4. Choose the largest of these three numbers
```
private static int maxsumRec( int [ ] a, int left, int right )
{
    int maxLeftBordersum = 0, maxRightBordersum = 0;
    int leftBordersum = 0, rightBordersum = 0;
int center = ( left + right ) / 2;
if( left == right) // Base case
    N = array size
    return a[ left ] > 0 ? a[ left ] : 0;
int maxLeftsum = maxsumRec( a, left, center );
int maxRightsum = maxSumRec( a, center + 1, right );
for(int i = center; i >= left; i-- )
{
    leftBordersum += a[ i ];
    if( leftBordersum > maxLeftBordersum )
        maxLeftBordersum = leftBorderSum;
}
for( int i = center + 1; i <= right; i++ )
{
    rightBordersum += a[ i ];
    if( rightBordersum > maxRightBordersum )
        maxRightBordersum = rightBordersum;
}
return max3( maxLeftSum, maxRightSum,
        maxLeftBordersum + maxRightBordersum );
```

private static int maxsumRec (int [] a, int left, int right)

```
int maxLeftBordersum = 0, maxRightBordersum = 0;
int leftBordersum = 0, rightBordersum = 0;
int center = ( left + right ) / 2;
if( left == right) // Base case
    return a[ left ] > 0 ? a[ left ] : 0;
int maxLeftSum = maxSumRec( a, left, center );
int maxRightSum = maxSumRec( a, center + 1, right );
for(int i = center; i >= left; i-- )
{
    leftBorderSum += a[ i ];
    if( leftBorderSum > maxLeftBordersum )
            maxLeftBordersum = leftBorderSum;
```

```
}
for( int i = center + 1; i <= right; i++ )
{
    rightBordersum += a[ i ];
    if( rightBordersum > maxRightBordersum )
            maxRightBorderSum = rightBordersum;
}
return max3( maxLeftSum, maxRightSum,
                        maxLeftBordersum + maxRightBorderSum );
```


Analysis?

- Write a Recurrence Relation
- $\mathrm{T}(\mathrm{N})$ gives the run-time as a function of N
- Two (or more) part definition:
- Base case, like $T(1)=c$
- Recursive case, like $T(N)=T(N / 2)+1$

So, what's the recurrence relation for the recursive MCSS algorithm?

General Form - Recurrence

$\mathrm{T}(\mathrm{n})=a \mathrm{~T}(\mathrm{n} / b)+\mathrm{f}(\mathrm{n})$

- $a=$ \# of subproblems
- $\mathrm{n} / b=$ size of subproblem
- $\mathrm{f}(\mathrm{n})=\mathrm{D}(\mathrm{n})+\mathrm{C}(\mathrm{n})$
- $D(n)=$ time to divide problem before recursion
- $\mathrm{C}(\mathrm{n})=$ time to combine after recursion
private static int maxSumRec (int [] a, int left, int right)

```
int maxLeftBordersum = 0, maxRightBordersum = 0;
int leftBordersum = 0, rightBordersum = 0;
int center = ( left + right ) / 2;
if( left == right ) // Base case
    return a[ left ] > 0 ? a[ left ] : 0;
int maxLeftSum = maxSumRec( a, left, center );
int maxRightSum = maxSumRec( a, center + 1, right );
for( int i = center; i >= left; i-- )
{
    leftBorderSum += a[ i ];
    if( leftBordersum > maxLeftBordersum )
            maxLeftBordersum = leftBorderSum;
```

```
}
for( int i = center + 1; i <= right; i++ )
{
    rightBordersum += a[ i ];
    if( rightBordersum > maxRightBordersum )
        maxRightBordersum = rightBorderSum;
}
return max3( maxLeftSum, maxRightSum,
                        maxLeftBordersum + maxRightBorderSum );
```

private static int maxSumRec (int [] a, int left, int right)

```
int maxLeftBordersum = 0, maxRightBordersum = 0;
int leftBordersum = 0, rightBordersum = 0;
int center = ( left + right ) / 2;
if( left == right) // Base case
    return a[ left ] > 0 ? a[ left ] : 0;
int maxLeftSum = maxSumRec( a, left, center );
int maxRightSum = maxSumRec( a, center + 1, right );
```

for (int $i=$ center; $i>=$ left; $i--$)
\{
leftBordersum $+=a[i] ;$
if(leftBordersum > maxLeftBordersum)
maxLeftBordersum $=$ leftBordersum;

Runtime = non-recursive part

\}
for (int $i=$ center +1 ; $i<=$ right; $i++$)
(
rightBordersum $+=$ a[i];
if(rightBordersum > maxRightBordersum)
maxRightBordersum $=$ rightBordersum;

```
T(N) =
2T(N/2)+0(N)
```

\}
return max3 (maxLeftsum, maxRightsum,

Recurrence Relation, Formally

- An equation (or inequality) that relates the $\mathrm{n}^{\text {th }}$ element of a sequence to certain of its predecessors (recursive case)
- Includes an initial condition (base case)
- Solution: A function of n.
- Similar to differential equation, but discrete instead of continuous
- Some solution techniques are similar to diff. eq. solution techniques

Solve Simple Recurrence Relations

- One strategy: look for patterns
- Forward substitution
- Backward substitution
- Examples:

As class:

1. $\mathrm{T}(0)=0, \mathrm{~T}(\mathrm{~N})=2+\mathrm{T}(\mathrm{N}-1)$
2. $\mathrm{T}(0)=1, \mathrm{~T}(\mathrm{~N})=2 \mathrm{~T}(\mathrm{~N}-1)$
3. $\mathrm{T}(0)=\mathrm{T}(1)=1, \mathrm{~T}(\mathrm{~N})=\mathrm{T}(\mathrm{N}-2)+\mathrm{T}(\mathrm{N}-1)$

On quiz:

1. $T(0)=1, T(N)=N T(N-1)$
2. $\mathrm{T}(0)=0, \mathrm{~T}(\mathrm{~N})=\mathrm{T}(\mathrm{N}-1)+\mathrm{N}$
3. $T(1)=1, T(N)=2 T(N / 2)+N$
(just consider the cases where $\mathrm{N}=2^{\mathrm{k}}$)

Next time: More solution

- Find patterns
- Telescoping
- Recurrence trees
- The master theorem

GraphSurfing Work Time

