
Priority Queues
Heaps

Heapsort

After this lesson, you should be able to …
… apply the binary heap insertion and deletion algorithms by hand
… implement the binary heap insertion and deletion algorithms
… explain why you can build a heap in O(n) time
… implement heapsort

} Format same as Exam 1 (written and programming)
◦ One 8.5x11 sheet of paper (one side) for written part
◦ Same resources as before for programming part

} Topics: weeks 1-7
◦ Through day 21, HW7, and EditorTrees milestone 3
◦ Especially Binary trees, including BST, AVL, indexed

(EditorTrees), Red-black
◦ Traversals and iterators, size vs. height, rank
◦ Recursive methods, including ones that should only touch

each node once for efficiency (like sum of heights from
HW5 and isHeightBalanced)
◦ Hash tables
◦ Heaps (but we won’t ask you to write code yet)

} Practice exam posted in Moodle and code in repos

} An ADT has an interface, and an implementation based on an
underlying data structure.

} Review some ADTs that we have seen, and add two new ones

ADT Underlying Data Structure
ArrayList Growable Array, plus integers capacity and size
LinkedList ListNodes, containing data and next pointer
BinaryTree BinaryNodes, containing data, left, right pointers
HashTable Growable Array (and possibly ListNodes)
PriorityQueue Binary Heap
BinaryHeap Growable Array, plus integers capacity and size

} We will see how to implement PriorityQueue and
BinaryHeap in terms of these underlying structures.

Basic operations
Implementation options

} Each element in the PQ has an associated
priority, which is a value from a comparable
type (in our examples, an integer).

} Operations (may have other names):
◦ insert(item, priority) (also called add,offer)

◦ findMin()
◦ deleteMin() (also called remove or poll)

◦ isEmpty() …

} What can we use for the internal representation
of the abstract heap using data structures that
we already know about?
◦ Array?
◦ Sorted array?
◦ AVL?

} One efficient approach uses a binary heap
◦ A somewhat-sorted complete binary tree

} Questions we'll ask:
◦ How can we efficiently represent a complete binary

tree?
◦ Can we add and remove items efficiently without

destroying the "heapness" of the structure?

0

An efficient implementation of
the PriorityQueue ADT

Storage (an array)

Algorithms for insertion and
deleteMin

Figure 21.1
A complete binary tree and its array representation

Data Structures & Problem Solving using JAVA/2E Mark Allen Weiss © 2002 Addison Wesley

Array: How to find the children
or the parent of a node?

Notice the
lack of
explicit
pointers in
the array

“complete”
is not a
completely
standard
term

One "wasted"
array position (0)

1

Fill in the array with values from the max heap
} Heap size = # items in the heap
} Array size = size of the array

Data Structures & Problem Solving using JAVA/2E Mark Allen Weiss © 2002 Addison Wesley

A Binary (min) Heap is a
complete Binary Tree (using
the array implementation, as
on the previous slide) that
has the heap-order property
everywhere.

In a binary heap, where do we find
•The smallest element?
•2nd smallest?
•3rd smallest?

2-3

} Idea of each:
1. Get the structure right first
� Insert at end (bottom of tree)
� Move the last element to the root after deleting the

root
2. Restore the heap-order property by percolating
(swapping an element/child pair)
� Insert by percolating up: swap with parent
� DeleteMin by percolating down: swap with child with min

value

Nice demo:
http://www.cs.usfca.edu/~galles/visualization/Heap.html

Figure 21.7
Attempt to insert 14, creating the hole and bubbling the hole up

Data Structures & Problem Solving using JAVA/2E Mark Allen Weiss © 2002 Addison Wesley

Create a "hole" where 14 can be inserted.
Percolate up!

Recall that the
actual data
movement is
done by array
manipulation

Figure 21.8
The remaining two steps required to insert 14 in the original heap shown in
Figure 21.7

Data Structures & Problem Solving using JAVA/2E Mark Allen Weiss © 2002 Addison Wesley

Analysis of
insertion …

4-5

Your turn:
1. Draw an empty array representation
2. Insert into an initially empty heap: 6 4 8 1 5 3 2 7

Figure 21.10 Creation of the hole at the root

Data Structures & Problem Solving using JAVA/2E Mark Allen Weiss © 2002 Addison Wesley

The min is at the root. Delete it, then use the percolateDown
algorithm to find the correct place for its replacement.

We must decide which child to promote, to make room for 31.

Figure 21.11
The next two steps in the deleteMin operation

Data Structures & Problem Solving using JAVA/2E Mark Allen Weiss © 2002 Addison Wesley

Figure 21.12
The last two steps in the deleteMin operation

Data Structures & Problem Solving using JAVA/2E Mark Allen Weiss © 2002 Addison Wesley

Compare node to its children,
moving root down and
promoting the smaller child until
proper place is found.

We’ll re-use
percolateDown
in HeapSort

6-7

} Idea of each:
1. Get the structure right first
� Insert at end (bottom of tree)
� Move the last element to the root after deleting the

root
2. Restore the heap-order property by percolating
(swapping an element/child pair)
� Insert by percolating up: swap with parent
� Delete by percolating down: swap with child with min value

} Worst case times:
◦ findMin: O(1)
◦ insert: amortized O(log n), worst O(n)
◦ deleteMin O(log n)

} big-oh times for insert/delete are the same
as in the balanced BST implementation, but ..
◦ Heap operations are much simpler to write.
◦ A heap doesn’t require additional space for pointers

or balance codes.

8

Use a binary heap to sort an
array.

} Start with an unsorted array of data and a
separate other empty data structure

} Insert each item from the unsorted array into the
other data structure

} Copy the items from the other data structure
(selecting the most extreme item first, then the next
most extreme, etc.) one at a time, back into the
original array, overwriting its unsorted data

} What data structures work for the other structure in
this scheme?
◦ BST? (Do it) Hash set? Priority queue, Heap?

} What is the runtime?

} Start with empty heap
} Insert each array element into heap, being

sure to maintain the heap property after each
insert

} Repeatedly do deleteMin on the heap,
copying elements back into array.

} Analysis?
◦ Next slide …

9

} Claim. log 1 + log 2 + log 3 +⋯+ log𝑁 is Θ(𝑁 log𝑁) .

Use Stirling's
approximation:

http://en.wikipedia.org
/wiki/Stirling%27s_appr
oximation

} Add the elements to the heap
◦ Repeatedly call insert O(n log n)

} Remove the elements and place into the array
◦ Repeatedly call deleteMin O(n log n)

} Total O(n log n)

} Can we do better for the insertion part?
◦ Yes, we don’t need it to be a heap until we are ready to

start deleting.
◦ insert all the items in arbitrary order into the heap’s

internal array and then use BuildHeap (next)

BuildHeap takes a complete tree that is not a heap and
exchanges elements to get it into heap form

At each stage it takes a root plus two heaps and "percolates
down" the root to restore "heapness" to the entire subtree

Why this starting point?

Figure 21.17 Implementation of the linear-time buildHeap method

Data Structures & Problem Solving using JAVA/2E Mark Allen Weiss © 2002 Addison Wesley

Figure 21.18
(a) After percolateDown(6);
(b) after percolateDown(5)

Data Structures & Problem Solving using JAVA/2E Mark Allen Weiss © 2002 Addison Wesley

Figure 21.19
(a) After percolateDown(4);
(b) after percolateDown(3)

Data Structures & Problem Solving using JAVA/2E Mark Allen Weiss © 2002 Addison Wesley

Figure 21.20
(a)After percolateDown(2);
(b) after percolateDown(1) and buildHeap terminates

Data Structures & Problem Solving using JAVA/2E Mark Allen Weiss © 2002 Addison Wesley

} Find a summation that represents the
maximum number of comparisons required
to rearrange an array of N=2H+1-1 elements
into a heap
◦ How many comparisons? The sum of the heights.

} Can you find a summation and its value?

} In HW8, you’ll do this.

10

} Find a summation that represents the
maximum number of comparisons required
to rearrange an array of N=2H+1-1 elements
into a heap

◦ The summation is

and the sum is N – H - 1

• HW8: prove this formula by induction
• Can do it strictly by the numbers
• Simpler?: Do it based on the trees.

} Add the elements to the heap
◦ Insert n elements into heap (call buildHeap, faster)

} Remove the elements and place into the array
◦ Repeatedly call deleteMin

11-end

} With one final tweak, heapsort only needs O(1)
extra space!

} Idea:
◦ When we deleteMin, we free up space at the end of the

heap’s array.
◦ Idea: write deleted item in just-vacated space!
◦ Would result in a reverse-sort. Can fix in linear time, but

better: use a max-heap. Then, comes out in order!

} http://www.cs.usfca.edu/~galles/visualization/H
eapSort.html

