UL S
o ° e/‘;a:”b

@ B
CSSE 230

Red-black trees

After today, you should be able to...
...determine if a tree is a valid red/black tree
...perform top-down insertion in a red/black tree

EditorTrees Milestone 1 due tomorrow night

. If submitted tonight, all will earn a late day.
. If submitted late, everyone is charged a late
day.
* Does everyone on my team have a late day?
« See link from Moodle
* One team has a member with 0 late days left

. Tomorrow’s class will be project work time
* Don’t let your team down! Be here and be on time.

4/14/2019



Feedback to help as you move on...

. Milestone 1 is graded on unit tests only.

. But...be sure to fix efficiency issues for the future
« See final notes in specification
« Cannot recalculate size or height to update balance
codes or handle rotations.
* You can recalculate rank and balance codes: these are
O(1) computations per node.
 Suggestion: update rank (++) on the way down the tree.

« Update balance codes and do rotations (which change rank
and balance codes) on the way back up.

« So each is O(log n) total

« Know when you can stop! (day 14 slides have the algorithm
for insertion, you’ll have to think about deletion)

Red-Black Trees

Another type of self-balancing search tree
with O(log N) performance

4/14/2019



A red-black tree is a binary tree with 5 properties:

It is a BST

Every node is either colored red or black.

The root is black.

No two successive nodes are red.

Every path from the root to a null node has the

same number of black nodes (“perfect black
balance”)

uiph WN —

./\.@o”o

To search a red-black tree, just ignore the colors

./\.@o”o

Runtime is O(height)

Since it’s a BST, runtime of insert and delete
should also be O(height)

4/14/2019



How tall is a red-black tree?

oo

Best-case: if all nodes black, it is ~log n.
Worst case: every other node on the longest path
is red. Height ~2 log n.
Note: Not height-balanced:

Sometimes taller but often shorter on
average.

® @

Bottom-Up Insertion Strategy

- Like BST:

* Insert at leaf
* Color it red (to keep perfect black balance)

. But could make two reds in a row?
« On the recursive travel back up the tree (like AVL),
* rotate (single- and double-, like AVL)
- and recolor (new)

+ Show now that various “rotation+recoloring”s fix two
reds in a row while maintaining black balance.

. At end of insert, always make root of the
entire tree black (to fix property 3).

4/14/2019



4/14/2019

2 Reds in a row, with red outer grandchild and 2
black sibling

figure 19.35

If § is black, a single
rotation between
parent and
grandparent, with
aﬁpropriale color
changes, restores
property 3 if X is an
outside grandchild,

(a) Before rotation (b) After rotation

Copyright © 2010 Pearson Education

2 Reds in a row, with red inner grandchild and 2
black sibling

figure 19.36

If Sis black, a double
rotation involving X,
the parent, and the
grandparent, Wiith
appropriate color
B ¢ cﬁanges‘ restores
property 3 if X is an
B ¢ D E inside grandchild.

(a) Before rotation (b) After rotation




2 Reds in a row, with red outer grandchild
and red sibling

figure 19.37

If Sis red, a single
rotation between
parent and
grandparent, with
aﬁpropriale color
changes, restores
prcauer’ry 3 between X
and P.

(a) Before rotation (b) After rotation

Copyright © 2010 Pearson Education

Case 3 (red sibling) can force us to do multiple
rotations recursively

- Bottom-Up insertion strategy must be
recursive.

. An alternative:

- If we ever had a black node with two red children, swap the
colors and black balance stays.

» Details next...

et

4/14/2019



Top-down insertion strategy:
Recolor red siblings on the way down the tree

Y

Situation: A black node with two red children.

Action: - Recolor the node red and the
children black (if root, make black).
- If the parent is red, perform rotations,
otherwise continue down the tree

Does this change black balance? No.

Top-Down Insertion Strategy

5t

- On the way down the tree to the insertion point, if ever see a
black node with two red children, swap the colors.
If X’s parent is red, perform rotations,
otherwise continue down the tree

. The rotations are done while traversing down the tree to the
insertion point.
» Avoid rotating into case (c) (2 red siblings) altogether.

. Top-Down insertion can be done with loops without recursion or

parent pointers, so is slightly faster.

4/14/2019



Insertion summary

. Rotate when an insertion or color flip
produces two successive red nodes.

. Rotations are just like those for AVL trees:

« If the two red nodes are both left children or both
right children, perform a single rotation.
« Otherwise, perform a double rotation.

. Except we recolor nodes instead of adjusting
their heights or balance codes.

Testing

1.

2.

3.

4.

Insert: 1,2, 3,4,5,6,7,8

Insert: 7,6,5,4,3,2,1, 1
« Relationship with (1)?
* Duplicates not inserted.

Insert: 10, 85, 15, 70, 20, 60, 30, 50, 65,
80, 90, 40, 5, 55

Use applet [linked to in Schedule for today]
to check your work.

4/14/2019



Summary

. Java uses:

. Slightly faster than AVL
trees

. What’s the catch?

* Need to maintain pointers
to lots of nodes (child,
parent, grandparent, great-
grandparent, great-great-
grandparent)

» The deletion algorithm is
nasty.

java.uti

Class TreeMap<K,V>

:’.ap il V>

Type Parameters:
¥ - the type of keys maintained by this map
v - the type of mapped values

All Implemented Interfaces:

Serializable, Cloneable, Map<K.V>, NavigableMap<K.V

A Red-Black tree based av Letap implementation. T

This implementation provides guaranteed log(n) time cost fc

4/14/2019



