

CSSE 230 Day 13
 AVL trees and rotations

This week, you should be able to...
...perform rotations on height-balanced trees,
on paper and in code
... write a rotate() method
... search for the kth item in-order using rank

Announcements

- Term project partners posted
- Sit with partner(s) in the second half of today's class.
- Read the spec before tomorrow and start planning.
- Exam 2 next class
- $1^{\text {st }} 25$ minutes for Day \#14 slides
- Remaining 80 minutes for Exam \#2

Exam 2 next class:
 Recursive tree traversal methods follow this format

Consider method fooTraverse() defined in BinaryNode class:
fooTraverse()
If base case:

- Return the appropriate value

If not at base case:

- 1. Compute a value for current node
- 2. Call left.fooTraverse() and right.fooTraverse()
- 3. Combine all results and return it
- This is $\mathrm{O}(\mathrm{n})$ if the computation on the node is constant-time
- Style: pass info through parameters and return values.
- Do not declare and use extra instance variables (fields) in BinaryTree class

Exam 2 next class:
 Recursive tree navigation methods follow this format

Consider method fooNavigate() defined in BinaryNode class

fooNavigate()

If base case:

- Do required work at target location navigated to

If not at base case:

- 1. Compute which subtree to navigate into
- 2. Call either left.fooNavigate() or right.fooNavigate()
- 3. Do (optional) work after the recursive call
- This is O (height) and if the BST is height-balanced then $O(\log (n))$
- Style: pass info through parameters and return values.
- Do not declare and use extra instance variables (fields) in BinaryTree class

Summary: for fast tree operations, we must keep tree somewhat balanced in O(log n) time

Total time to do insert $/$ delete $=$

- Time to find the correct place to insert $=\mathrm{O}$ (height)
- + time to detect an imbalance
- + time to correct the imbalance

And if we don't bother with balance after insertions and deletions?

If try to keep perfect balance:

- Height is O(logn) BUT .

- But maintaining perfect balance requires $O(n)$ work

Height-balanced trees are still $\mathrm{O}(\log \mathrm{n})$

- |Height(left) - Height(right) $\mid \leq 1$
- For T with height $h, N(T) \geq \operatorname{Fib}(h+3)-1$
- So $\mathrm{H}<1.44 \log (\mathrm{~N}+2)-1.328$ *

AVL (Adelson-Velskii and Landis) trees maintain height-balance using rotations

- Are rotations $\mathrm{O}(\log \mathrm{n})$? We'll see...

AVL tree nodes are just like BinaryNodes, but also have an extra field to store a "balance code"

/ : Current node's left subtree is taller by 1 than its right subtree
$=$: Current node's subtrees have equal height
$\$: Current node's right subtree is taller by 1 than its left subtree
Two possible data representations for: / = \backslash

- Use just two bits, e.g., in a low-level language
- Use enum type in a higher-level language like Java

Using balance codes makes AVL Tree rebalancing efficient: $\mathrm{O}(\log \mathrm{n})$

- Assume tree is height-balanced before insertion
- Insert as usual for a BST
- Move up from the newly inserted node to the lowest "unbalanced" node (if any)
- Use the balance code to detect unbalance how?
-Why is this $\mathrm{O}(\log \mathrm{n})$?
- We move up the tree to the root in worst case,
 NOT recursing into subtrees to calculate heights
- Do an appropriate rotation (see next slides) to balance the subtree rooted at this unbalanced node

Four types of rotations are required to remove different cases of tree imbalances

- For example, a single left rotation:

We rotate by pulling the "too tall" sub-tree up and pushing the "too short" sub-tree down

- Two basic cases:
- "Seesaw" case:
- Too-tall sub-tree is on the outside
- So tip the seesaw so it's level

- "Suck in your gut" case:
- Too-tall sub-tree is in the middle
- Pull its root up a level

Double Left Rotation Q6-7

Weiss calls this "right-left double rotation"

Your turn - work with a partner

- Write the method:
- static BalancedBinaryNode singleRotateLeft (BalancedBinaryNode parent BalancedBinaryNode child /* B */) \{
\}
- Returns a reference to the new root of this subtree.
- Don't forget to set the balanceCode fields of the nodes.

Your turn — work with a partner

- Write the method:
- static BalancedBinaryNode singleRotateLeft (BalancedBinaryNode parent, /* A */ BalancedBinaryNode child /* B */) \{

\}

- Returns a reference to the new root of this subtree.
- Don't forget to set the balanceCode fields of the nodes.

More practice-(sometime after class)

- Write the method:
- BalancedBinaryNode doubleRotateRight (BalancedBinaryNode parent,
/* A */
BalancedBinaryNode child, /* C */
BalancedBinaryNode grandChild /* B */) \{
\}
- Returns a reference to the new root of this subtree.
- Rotation is mirror image of double rotation from an earlier slide

$\mathrm{O}(\log \mathrm{N})$?

- If you have to rotate after insertion, you can stop moving up the tree:
- Both kinds of rotation leave height the same as before the insertion!
- Is insertion plus rotation cost really $\mathrm{O}(\log \mathrm{N})$?

Insertion/deletion in AVL Tree: O(log n)
Find the imbalance point (if any): $\quad \mathrm{O}(\log n$)
Single or double rotation:
Total work:
O(1)
O(log n)
Foreshadow:
for deletion \# of rotations:
$O(\log N)$

Term Project: EditorTrees

Like BST, except:

1. Keep height-balanced
2. Insertion/deletion by index, not by comparing elements.

So not sorted

Examples:

- EditorTree et = new EditorTree()
- et.add('a') // append to end
- et.add('b’) // same
- et.add('c') // same. Rebalance!
- et.add('d’, 2) // where does it go?
- et.add('e')
- et.add('f', 3)
- Notice the tree is height-balanced (so height $=O(\log n)$), but not a BST

To find index quickly, add a rank field to BinaryNode

- Gives the in-order position of this node within its own subtree
-i.e., rank $=$ the size of its left subtree
- How would we do get(pos)?
- Insert and de7ete start similarly

Rank and position of element in tree

Suppose EditorTree's toString method performs an in-order traversal

Then:
String s2 = t5.toString(); // s2 = "SLIPPERY"

- Character ' S ' is at position 0 , and has rank 0
- Character ' L ' is at position 1 , and has rank 1
- Character ' l ' is at position 2, and has rank 0
- Character ' P ' is at position 3, and has rank 1
- Character ' P ' is at position 4, and has rank 0
- Character ' E ' is at position 5 , and has rank 5
- Character ' R ' is at position 6 , and has rank 0
- Character ' Y ' is at position 7, and has rank 1
- $|s 2|=8$

With your EditorTrees team

Milestone 1 due in day 17. Start soon!
Read the specification and check out the starting code

