3/28/2019

/([KA Q1-2
0
© ©
@®

CSSE 230 Day 12

Height-Balanced Trees

After today, you should be able to...

...give the minimum number of nodes in a height-balanced tree
...explain why the height of a height-balanced trees is O(log n)
...help write an induction proof

3/28/2019

Today's Agenda

. Annhouncements

 EditorTrees team preferences survey due tonight
« Also HW 4

« Also Doublets partner evaluation survey

« Exam 2 (programming only) in class on Tuesday
(day 14).

You’ll have at least 85 minutes for the exam

. Another induction example
. Recap: The need for balanced trees

. Analysis of worst case for height-balanced
(AVL) trees

3/28/2019

A useful result... by way of induction

. Recall our definition of the Fibonacci numbers:

*Fo=0,F, =1,F, =F,; + F

. Prove the closed form:

78 Prove by induction the formula
o= H(52) -(52)
YTOAW 2 2

Recall: How to show that property P(n) is true for all n>n,:
(1) Show the base case(s) directly
(2) Show that if P(j) is true for all j with ny<j<k, then P(k) is true also

Details of step 2:
a. Fix “arbitrary but specific’ k >
b. Write the induction hypothesis: assume P(J) is true Vj : n,y<j<k
c. Prove P(k), using the induction hypothesis.

Q3

3/28/2019

=T B o S

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

A B C
1/SQRT(5) = 0.447213595
(1+SQRT(5))/2 = 1.618033989
(1- SQRT(5))/2 = -0.618033989
Fibonacci
Open Form
n fn = fn_1 + fn -2
0 fo= 0
1 fl= 1
2 f2= 1
3 f3= 2
4 f4 = 3
5 fs= 5
6 feo= 8
7 f7 = 13
8 fa = 21
9 o= 34
10 fi0 = 55
11 fl1= 89
12 f12 = 144
13 f13 = 233
14 f14 = 377
15 fi5 = 610
16 fi6 = 987
17 f17 = 1597
18 fi8 = 2584
19 f19 = 4181
20 f20 = 6765

Fibonacci

Closed Form

C$1*(POWER(C$2,n) - POWER(C$3,n))

oUW N e O

13
21
34
55
89

144
233
377
610
987

1597

2584

4181

6765

3/28/2019

Review: The number of nodes in a tree with
height h(T) is bounded

h(T)

N(T) = h(T) + 1 N(T) < 2PM+1

3/28/2019

Review: Therefore the height of a tree with N(T)
nodes is also bounded

h(T) < N(T)—l
.
| /\7 > [log(N(M)+1)7 -1

3/28/2019

We want to keep trees balanced so that the run
time of BST algorithms is minimized

. BST algorithms are O(h(T))
- Minimum value of h(T) is [log(N(T) + 1)] — 1

. Can we rearrange the tree after an insertion
to guarantee that h(T) is always minimized?

Q4

3/28/2019

But keeping complete balance is too expensive!

. Consider inserting 1 in the following tree.
- What does it take to get back to complete balance?

. Keeping completely balanced is too expensive:
* O(N) to rebalance after insertion or deletion

e rebalance e

5
g
0

Solution: Height Balanced Trees (less is more)

Q5

3/28/2019

Height-Balanced Trees have subtrees Q6
whose heights differ by at most 1

N

9

© (&)
@@)

More precisely, a binary tree T is height
balanced if
T is empty, or if
| height(T,) - height(T;) | <1, and
T, and Ty are both height balanced.

Still height-balanced?

3/28/2019

What is the tallest height-balanced tree
with N nodes?

Is it taller than a completely balanced tree?

> Consider the dual concept: find the minimum
number of nodes for height h.

Q7

A binary search tree T is height

balanced if
T is empty, or if

| height(T,) - height(T;) | <1, and

T, and Ty are both height balanced.

10

3/28/2019

An AVL tree is a height-balanced BST that
maintains balance using “rotations”

- Named for authors of original paper,
Adelson-Velskii and Landis (1962).

. Max. height of an AVL tree with N nodes is:
H< 1.44 log (N+2) - 1.328 = O(log N)

Q8-9

11

3/28/2019

Our goal is to rebalance an AVL tree Q10
after insert/delete in O(log n) time

. Why?

. Worst cases for BST operations are O(h(T))
 find, insert, and delete

. h(T) can vary from O(log N) to O(N)
. Height of a height-balanced tree is O(log N)

. So if we can rebalance after insert or delete in
O(log N) time, then all operations are O(log N)

12

