CSSE 230 Day 2

Growable Arrays Continued Big-Oh notation

Submit Growable Array exercise

Agenda and goals

- Growable Array recap
- Big-Oh definition
- After today, you'll be able to
- Use the term amortized appropriately in analysis
- State the formal definition of big-Oh notation

Announcements and FAQ

- You will not usually need the textbook in class
- All should do piazza introduction post (a few students left)
- Turn in GrowableArrays now.
- Quiz problems 1-5. Do on your own, then compare with a neighbor.

You must demonstrate programming competence on exams to succeed

- See syllabus for exam weighting and caveats.
- Evening exams (Tuesdays of weeks 3 and 8)
- Think of every program you write as a practice test
- Especially HW4 and test 2

Review these as needed

- Logarithms and Exponents
- properties of logarithms:

$$
\begin{aligned}
& \log _{b}(x y)=\log _{b} x+\log _{b} y \\
& \log _{b}(x / y)=\log _{b} x-\log _{b} y \\
& \log _{b} x^{\alpha}=\alpha \log _{b} x \\
& \log _{b} x=\frac{\log _{a} x}{\log _{\mathrm{a}} \mathrm{~b}}
\end{aligned}
$$

- properties of exponentials:

$$
\begin{aligned}
& \mathrm{a}^{(\mathrm{b}+\mathrm{c})}=\mathrm{a}^{\mathrm{b}} \mathrm{a}^{\mathrm{c}} \\
& \mathrm{a}^{\mathrm{bc}}=\left(\mathrm{a}^{\mathrm{b}}\right)^{\mathrm{c}} \\
& \mathrm{a}^{\mathrm{b} / \mathrm{a}^{\mathrm{c}}=\mathrm{a}^{(\mathrm{b}-\mathrm{c})}} \\
& \mathrm{b}=\mathrm{a}^{\log _{\mathrm{a}} \mathrm{~b}} \\
& \mathrm{~b}^{\mathrm{c}=\mathrm{a}^{\mathrm{c}^{*} \log _{\mathrm{a}} \mathrm{~b}}}
\end{aligned}
$$

Practice with exponentials and logs

(Do these with a friend after class, not to turn in)
Simplify: Note that $\log n$ (without a specified) base means $\log _{2} n$. Also, $\log \mathrm{n}$ is an abbreviation for $\log (\mathrm{n})$.

\author{

1. $\log (2 n \log n)$
 2. $\log (n / 2)$
 3. $\log (\mathbf{s q r t}(n))$
 4. $\log (\log (\operatorname{sqrt}(n)))$
}

Where do logs come from in algorithm analysis?

Solutions

No peeking!
Simplify: Note that $\log n$ (without a specified) base means $\log _{2} n$. Also, $\log \mathrm{n}$ is an abbreviation for $\log (\mathrm{n})$.

$$
\left.\begin{aligned}
& \text { 1. } 1+\log n+\log \log n \\
& \text { 2. } \log n-1 \\
& \text { 3. } 1 / 2 \log n \\
& \text { 4. }-1+\log \log n
\end{aligned} \right\rvert\, \begin{aligned}
& \text { 5. }(\log n) / 2 \\
& \text { 6. } n^{2} \\
& \text { 7. } n+1=2^{3 k} \\
& \log (n+1)=3 k \\
& k=\log (n+1) / 3
\end{aligned}
$$

A: Any time we cut things in half at each step (like binary search or mergesort)

Questions?

- About Homework 1?
- Aim to complete tonight, since it is due after next class
- It is substantial
- The last problem (the table) is worth lots of points!
- About the Syllabus?

Homework 1 help

How many times does sum++ run?

$$
\begin{aligned}
& \text { for }(\mathrm{i}=4 ; \mathrm{i}<\mathrm{n} ; \mathrm{i}++) \\
& \quad \text { for }(\mathrm{j}=0 ; \mathrm{j}<=\mathrm{n} ; \mathrm{j}++) \\
& \quad \text { sum }++;
\end{aligned}
$$

Why is this one so easy? (does the inner loop depend on outer loop?)
What if inner were $(\mathrm{j}=0 ; \mathrm{j}<=\mathrm{i} ; \mathrm{j}++$) ?

Homework 1 help

How many times does sum++ run?
for $(\mathrm{i}=1 ; \mathrm{i}<=\mathrm{n} ; \mathrm{i}$ *=2) sum + +;

Be precise, using floor/ceiling as needed, to get full credit.

Warm Up and Stretching thoughts

- Short but intense! ~ 50 lines of code total in our solutions
- Be sure to read the description of how it will be graded. Note how style will be graded.
- Demo: Use Subclipse to check out the project
- Demo: Running the JUnit tests for test, file, package, and project

Growable Arrays Exercise Daring to double

Growable Arrays Table

\mathbf{N}	$\mathbf{E}_{\mathbf{N}}$	Answers for problem 2
4	0	0
5	0	0
6	5	5
7	5	$5+6=11$
10	5	$5+6+7+8+9=35$
11	$5+10=15$	$5+6+7+8+9+10=45$
20	15	$\operatorname{sum}(\mathrm{i}, \mathrm{i}=5 . .19)=180 \quad$ using Maple
21	$5+10+20=35$	$\operatorname{sum}(\mathrm{i}, \mathrm{i}=5 . .20)=200$
40	35	$\operatorname{sum}(\mathrm{i}, \mathrm{i}=5 . .39)=770$
41	$5+10+20+40=75$	$\mathrm{sum}(\mathrm{i}, \mathrm{i}=5 . .40)=810$

Doubling the Size

- Doubling each time:
- Assume that $\mathrm{N}=5\left(2^{\mathrm{k}}\right)+1$.
- Total \# of array elements copied:

k	N	\#copies
0	6	5
1	11	$5+10=15$
2	21	$5+10+20=35$
3	41	$5+10+20+40=75$
4	81	$5+10+20+40+80=155$
k	$=5\left(2^{k}\right)+1$	$5\left(1+2+4+8+\ldots+2^{k}\right)$

Express as a closed-form expression in terms of K , then express in terms of N

Doubling the Size (solution)

- Assume that $\mathrm{N}=5\left(2^{\mathrm{k}}\right)+1$.
- Total \# of array elements copied
$=5\left(1+2+4+8+\ldots+2^{k}\right)$
, Do in terms of k, then in terms of N

Adding One Each Time

- Total \# of array elements copied:

\mathbf{N}	\#copies
6	5
7	$5+6$
8	$5+6+7$
9	$5+6+7+8$
10	$5+6+7+8+9$
\mathbf{N}	$?$

Conclusions

- What's the amortized cost of adding an additional string...
- in the doubling case?
- in the add-one case?

Amortized cost means the "average per-operation cost" while adding to a single GrowableArray many times.

- So which should we use?

Worst-case vs amortized cost for adding an element to an array using the doubling scheme

Worst-case:
$\mathrm{O}(\mathrm{n})$

amortized:
O(1)

Note: average case means averaged over input domain, amortized cost means averaged over many uses.

Algorithm Analysis: Running Time

Running Times

- Algorithms may have different time complexity on different data sets
- What do we mean by "Worst Case"?
- What do we mean by "Average Case"?
- What are some application domains where knowing the Worst Case time complexity would be important?
- http://cacm.acm.org/magazines/2013/2/160173-the-tail-at-scale/fulltext

Average Case and Worst Case

Worst-case vs amortized cost for adding an element to an array using the doubling scheme

Worst-case:
$\mathrm{O}(\mathrm{n})$

amortized:
O(1)

Note: average case means averaged over input domain, amortized cost means averaged over many uses.

Notation for Asymptotic Analysis

Big-Oh

Asymptotic Analysis

- We only care what happens when N gets large
- Is the function linear? quadratic? exponential?

Figure 5.1

Running times for small inputs

Data Structures \& Problem Solving using JAVA/2E Mark Allen Weiss © 2002 Addison Wesley

Figure 5.2
Running times for moderate inputs

Data Structures \& Problem Solving using JAVA/2E

Figure 5.3

Functions in order of increasing growth rate

Function	Name	The answer to most big- Oh questions is one of
c	Constant	these functions
$\log N$	Logarithmic	
$\log ^{2} N$	Log-squared	
N	Linear	
$N \log N$	Quadratic	
N^{2}	Cubic	
N^{3}	Exponential	
2^{N}		

Simple Rule for Big-Oh

- Drop lower order terms and constant factors
- $7 n-3$ is $O(n)$
- $8 n^{2} \log n+5 n^{2}+n$ is $O\left(n^{2} \log n\right)$

Formal Definition of Big-Oh

- Given functions $f(n)$ and $g(n)$, we say that $f(n)$ is $O(g(n))$ if and only if there exist constants $c>0$ and $n_{0} \geq 0$ such that

$$
f(n) \leq c g(n) \text { for all } n \geq n_{0} .
$$

- For this to make sense, $f(n)$ and $g(n)$ should be functions over non-negative integers.

To prove Big Oh, find 2 constants and show they work

- A function $f(n)$ is (in) $O(g(n))$ if there exist two positive constants c and n_{0} such that for all $n \geq n_{0}$, $f(n) \leq c g(n)$
- Q: How to prove that $f(n)$ is $O(g(n))$?

A: Give c and n_{0}

> Assume that all functions have non-negative values, and that we only care about $n \geq 0$. For any function $g(n), O(g(n))$ is a set of functions.

- $E x: f(n)=4 n+15, g(n)=? ? ?$.

To prove Big Oh, find 2 constants

 and show they work- A function $f(n)$ is (in) $O(g(n))$ if there exist two positive constants c and n_{0} such that for all $n \geq n_{0}$, $\mathrm{f}(\mathrm{n}) \leq \mathrm{c} \mathrm{g}(\mathrm{n})$
- Q: How to prove that $f(n)$ is $O(g(n))$?

A: Give c and n_{0}

- Ex $2: f(n)=n+\sin (n), g(n)=? ? ?$

