CSSE 230 Day 2

Growable Arrays Continued
Big-Oh notation

Submit Growable Array exercise

Agenda and goals

» Growable Array recap
» Big—Oh definition

» After today, you’ll be able to
> Use the term amortized appropriately in analysis
- State the formal definition of big-Oh notation

QI1-5
Announcements and FAQ

» You will not usually need the textbook in
class

» All should do piazza introduction post (a
few students left)

» Turn in GrowableArrays now.

» Quiz problems 1-5. Do on your own, then
compare with a neighbor.

You must demonstrate programming
competence on exams to succeed

» See syllabus for exam weighting and caveats.
» Evening exams (Tuesdays of weeks 3 and 8)

» Think of every program you write as a
practice test
- Especially HW4 and test 2

Review these as needed

* Logarithms and Exponents

- properties of logarithms: - properties of exponentials:
|
log,(xy) = log,x + logy a(bre) = 3bac
logy(x/y) = log,x - log,y qbe — (ab)‘:

log,x” = atlogyx

ab/a¢ = a(b-0)
log,x

logy, X -—=4— log,b
log,b b=a

he — c*log,b

Practice with exponentials and logs
(Do these with a friend after class, not to turn in)

Simplify: Note that log n (without a specified) base means log,n.
Also, log n is an abbreviation for log(n).

log (2 n log n)

. log(n/2)

log (sqrt (n))

. log (log (sqrt(n)))

S. log,n
6. 22 log n

7. if n=23k- 1, solve for k.

Where do logs come from in algorithm analysis?

Solutions
No peeking!

Simplify: Note that log n (without a specified) base means log,n.
Also, log n is an abbreviation for log(n).

1. 1+Hlogn +loglogn |(5. (logn)/2
2. logn-1 6. n?
3. Ylogn 7. n+1=23kK

4. -1 +1loglogn log(n+1)=3k

k=log(n+1)/3

A: Any time we cut things in half at each step
(like binary search or mergesort)

Q2-3
Questions?

» About Homework 17

- Aim to complete tonight, since it is due after next
class

> |t is substantial
- The last problem (the table) is worth lots of points!

» About the Syllabus?

Homework 1 help

How many times does sum++ run?

for(i=4;i<n;i++)
for(j=0;j<=n;j++)
sum-++;

Why is this one so easy? (does the inner loop depend
on outer loop?)
What if innerwere (j=0;j <=1 ;j++)?

Homework 1 help

How many times does sum++ run?

for(i=1;i<=n;i*=2)
sum-++;

Be precise, using floor/ceiling as needed, to get full
credit.

Warm Up and Stretching thoughts

> Short but intense! ~50 lines of code total in our
solutions

- Be sure to read the description of how it will be
graded. Note how style will be graded.

- Demo: Use Subclipse to check out the project

- Demo: Running the JUnit tests for test, file,
package, and project

Growable Arrays Exercise

Daring to double

Growable Arrays Table

N Ex Answers for problem 2

4 0 0

5 0 0

6 5 5

7 5 5+6=11

10 5 5+6+7+8+9=35

11 5+10=15 5+6+7+8+9+10=45

20 15 sum(i, i=5..19)= 180 using Maple
21 54+ 10+ 20=35 sum(i, i=5..20) = 200

40 35 sum(i, i=5..39) =770

5+10+20+40=75

sum(i, 1=5..40) =810

Doubling the Size

» Doubling each time:
- Assume that N = 5 (2K) + 1.

» Total # of array elements copied:

N Thcoples

0 6
1 11
2 21
3 41
4 81
k

=524 + 1

5

54+ 10=15

54+ 10+ 20 = 35

5+ 10+ 20+ 40 =75

5+ 10+ 20 + 40 + 80 =155
5(1 +2+4+ 8+ ...+ 2%

—

Express as a closed-form expression in
terms of K, then express in terms of N

Doubling the Size (solution)

» Assume that N = 5 (2K) + 1.

» Total # of array elements copied
=5(1+2+4+8+ ..+ 2K

» Do in terms of k, then in terms of N

Adding One Each Time

» Total # of array elements copied:

N lfopies
6 5

/ 5+ 06

8 5+6+7

9 5+6+7+8

10 5+6+7+8+9

N 27?

Express as a closed-form
expression in terms of N

e Q6-7
Conclusions

» What’s the amortized cost of adding an
additional string...
> in the doubling case?
> in the add-one case?

Amortized cost means the “average per-operation cost” while
adding to a single GrowableArray many times.

» So which should we use?

Worst-case vs amortized cost for adding an
element to an array using the doubling scheme

Worst-case:
O(n)

amortized:
o

Note: average case means averaged
over /input domain, amortized cost
means averaged over many uses.

Algorithm Analysis:
Running Time

Running Times

» Algorithms may have different time
complexity on different data sets

» W
» W
» W

nat do we mean by "Worst Case"?
nat do we mean by "Average Case'?

nat are some application domains where

knowing the Worst Case time complexity
would be important?

>

Average Case and Worst Case

SR e T —— wor

o
= 4ms

— dverage-case
=i

= 3

= Ams

e

= - == best-case

oo 2 ms

| ms

A B C D E F G
[nput Instance

Worst-case vs amortized cost for adding an
element to an array using the doubling scheme

Worst-case:
O(n)

amortized:
o

Note: average case means averaged
over /input domain, amortized cost
means averaged over many uses.

Notation for Asymptotic
Analysis

Big-Oh

Asymptotic Analysis
» We only care what happens when N gets large

» Is the function linear? quadratic?
exponential?

Figure 5.1

Running times for small inputs

10 I I I
Linear
O(Nlog N)
8T Quadratic 7
Cubic

Running Time (milliseconds)

0 | | | | | | | | |
10 20 30 40 50 60 70 80 90 100

Input Size (N)

Data Structures & Problem Solving using JAVA/2E Mark Allen Weiss ~ © 2002 Addison Wesley

Figure 5.2

Running times for moderate inputs

Running Time (seconds)

0.8

0.6

0.4

0.2

L

Linear

O(Nlog N)
Quadratic

Cubic

1000

2000

3000

4000 5000 6000 7000 8000

Input Size (N)

9000 10000

Data Structures & Problem Solving using JAVA/2E

Mark Allen Weiss

© 2002 Addison Wesley

Figure 5.3

Functions in order of increasing growth rate

The answer to most big-

FUNCTION NAME Oh questions 1s one of
¢ Constant these functions

log N Logarithmic

log2N Log-squared

N Linear

Nlog N M log N a.k.a "log linear"

N? Quadratic

N? Cubic

2N Exponential

Data Structures & Problem Solving using JAVA/2E Mark Allen Weiss ~ © 2002 Addison Wesley

Simple Rule for Big-Oh
» Drop lower order terms and constant factors
» 7n = 3 is O(n)

» 8n¢logn + 5n¢ + n is O(n4logn)

Q8
Formal Definition of Big—Oh

» Given functions f(n) and g(n), we say that f(n) is O(g(n)) if and
only if there exist constants ¢ > 0 and n, > 0 such that

f(n) < cg(n) for all n = n,.

» For this to make sense, f(n) and g(n) should be functions over
non-negative integers.

Running Time

Input Size

To prove Big Oh, find 2 constants *’
and show they work

» A function f(n) is (in) O(g(n)) if there exist two

positive constants ¢ and n, such that 7or al/l n>n,,
fin) < cg(n)

» Q: How to prove that f(n) is O(g(n))?
A: Give c and n,

Assume that all functions have non-negative
values, and that we only care about n>0. For
any function g(n), O(g(n)) is a set of functions.

» Ex: f(n) = 4n + 15, g(n) = ??2.

To prove Big Oh, find 2 constants 21

and show they work

» A function f(n) is (in) O(g(n)) if there exist two
positive constants ¢ and n, such that for all nx n,,
f(n) < c g(n)

» Q: How to prove that f(n) is O(g(n))?
A: Give c and n,

» Ex 2: f(n) = n + sin(n), g(n) = 77?

