

Growable Arrays Continued Big-Oh notation

Submit Growable Array exercise

Agenda and goals

- Growable Array recap
- Big–Oh definition
- After today, you'll be able to
 - Use the term *amortized* appropriately in analysis
 - State the formal definition of big-Oh notation

Q1-5

Announcements and FAQ

- You will not usually need the textbook in class
- All should do piazza introduction post (a few students left)
- Turn in GrowableArrays now.
- Quiz problems 1-5. Do on your own, then compare with a neighbor.

You must demonstrate programming competence on exams to succeed

- > See syllabus for exam weighting and caveats.
- Evening exams (Tuesdays of weeks 3 and 8)
- Think of every program you write as a practice test
 - Especially HW4 and test 2

Review these as needed

- Logarithms and Exponents
 - properties of logarithms:

 $log_{b}(xy) = log_{b}x + log_{b}y$ $log_{b}(x/y) = log_{b}x - log_{b}y$ $log_{b}x^{\alpha} = \alpha log_{b}x$ $log_{b}x = \frac{log_{a}x}{log_{a}b}$

- properties of exponentials:

$$a^{(b+c)} = a^{b}a^{c}$$
$$a^{bc} = (a^{b})^{c}$$
$$a^{b}/a^{c} = a^{(b-c)}$$
$$b = a^{\log_{a}b}$$
$$b^{c} = a^{c*\log_{a}b}$$

Practice with exponentials and logs (Do these with a friend after class, not to turn in)

Simplify: Note that $\log n$ (without a specified) base means $\log_2 n$. Also, $\log n$ is an abbreviation for $\log(n)$.

1.	log	(2 n	log	n)
----	-----	------	-----	----

- 2. $\log(n/2)$
- 3. log (sqrt (n))
- 4. log (log (sqrt(n)))

Where do logs come from in algorithm analysis?

Solutions No peeking!

Simplify: Note that $\log n$ (without a specified) base means $\log_2 n$. Also, $\log n$ is an abbreviation for $\log(n)$.

1. 1+log n + log log n	5. (log n) / 2
2. log n - 1	6. n ²
3. ¹ / ₂ log n	7. $n+1=2^{3k}$
41 + log log n	7. $n+1=2^{3k}$ log(n+1)=3k k=log(n+1)/3

A: Any time we cut things in half at each step (like binary search or mergesort)

Q2-3

Questions?

- About Homework 1?
 - Aim to complete tonight, since it is due after next class
 - It is substantial
 - The last problem (the table) is worth lots of points!
- About the Syllabus?

Homework 1 help

How many times does sum++ run?

```
for (i = 4; i < n; i++)
for (j = 0; j <= n; j++)
sum++;
```

Why is this one so easy? (does the inner loop depend on outer loop?) What if inner were (j = 0; j <= i ; j++)?

Homework 1 help

How many times does sum++ run?

```
for (i = 1; i <= n; i *= 2)
sum++;
```

Be precise, using floor/ceiling as needed, to get full credit.

Warm Up and Stretching thoughts

- Short but intense! ~50 lines of code total in our solutions
- Be sure to read the description of how it will be graded. Note how style will be graded.
- **Demo:** Use Subclipse to check out the project
- Demo: Running the JUnit tests for test, file, package, and project

Growable Arrays Exercise

Daring to double

Growable Arrays Table

Ν	$\mathbf{E}_{\mathbf{N}}$	Answers for problem 2
4	0	0
5	0	0
6	5	5
7	5	5 + 6 = 11
10	5	5+6+7+8+9=35
11	5 + 10 = 15	5 + 6 + 7 + 8 + 9 + 10 = 45
20	15	sum(i, i=519) = 180 using Maple
21	5 + 10 + 20 = 35	sum(i, i=520) = 200
40	35	sum(i, i=539) = 770
41	5 + 10 + 20 + 40 = 75	sum(i, i=540) = 810

Doubling the Size

- Doubling each time:
 - Assume that $N = 5 (2^k) + 1$.
- Total # of array elements copied:

k	Ν	#copies
0	6	5
1	11	5 + 10 = 15
2	21	5 + 10 + 20 = 35
3	41	5 + 10 + 20 + 40 = 75
4	81	5 + 10 + 20 + 40 + 80 = 155
k	$= 5 (2^k) + 1$	$5(1 + 2 + 4 + 8 + + 2^k)$

Express as a closed-form expression in terms of K, then express in terms of N

Doubling the Size (solution)

- Assume that $N = 5 (2^k) + 1$.
- Total # of array elements copied
 = 5(1 + 2 + 4 + 8 + ... + 2^k)
- Do in terms of k, then in terms of N

Adding One Each Time

Total # of array elements copied:

• Q6-7

Conclusions

- What's the amortized cost of adding an additional string...
 - in the doubling case?
 - in the add-one case?

Amortized cost means the "average per-operation cost" while adding to a single GrowableArray many times.

So which should we use?

Worst-case vs amortized cost for adding an element to an array using the doubling scheme

amortized: O(1)

> Note: average case means averaged over *input domain*, amortized cost means averaged over *many uses*.

Algorithm Analysis: Running Time

Running Times

- Algorithms may have different *time* complexity on different data sets
- What do we mean by "Worst Case"?
- What do we mean by "Average Case"?
- What are some application domains where knowing the Worst Case time complexity would be important?
- http://cacm.acm.org/magazines/2013/2/160173-the-tailat-scale/fulltext

Average Case and Worst Case

Worst-case vs amortized cost for adding an element to an array using the doubling scheme

amortized: O(1)

> Note: average case means averaged over *input domain*, amortized cost means averaged over *many uses*.

Notation for Asymptotic Analysis

Big-Oh

Asymptotic Analysis

- We only care what happens when N gets large
- Is the function linear? quadratic? exponential?

Figure 5.1

Running times for small inputs

Figure 5.2

Running times for moderate inputs

Data Structures & Problem Solving using JAVA/2E Mark Allen Weiss © 2002 Addison Wesley

Figure 5.3

Functions in order of increasing growth rate

		The answer to most big-
Function	Name	Oh questions is one of
с	Constant	these functions
$\log N$	Logarithmic	
$\log^2 N$	Log-squared	
Ν	Linear	
$N \log N$	N log N 🔶 🗕	a.k.a "log linear"
N^2	Quadratic	
N ³	Cubic	
2 ^N	Exponential	

Simple Rule for Big-Oh

- Drop lower order terms and constant factors
- 7n 3 is O(n)
- $\mathbf{N} \mathbf{N}^2 \mathbf{logn} + \mathbf{5n}^2 + \mathbf{n} \mathbf{is} \mathbf{O}(\mathbf{n}^2 \mathbf{logn})$

Formal Definition of Big-Oh

- Given functions f(n) and g(n), we say that f(n) is O(g(n)) if and only if there exist constants c > 0 and n₀ ≥ 0 such that
 f(n) ≤ c g(n) for all n ≥ n₀.
- For this to make sense, f(n) and g(n) should be functions over non-negative integers.

Q9

To *prove* Big Oh, find 2 constants and show they work

- A function f(n) is (in) O(g(n)) if there exist two positive constants c and n₀ such that for all n≥ n₀, f(n) ≤ c g(n)
- Q: How to prove that f(n) is O(g(n))?
 A: Give c and n₀

Assume that all functions have non-negative values, and that we only care about $n \ge 0$. For any function g(n), O(g(n)) is a set of functions.

• Ex: f(n) = 4n + 15, g(n) = ???.

To *prove* Big Oh, find 2 constants Q10 and show they work

- A function f(n) is (in) O(g(n)) if there exist two positive constants c and n₀ such that for all n≥ n₀, f(n) ≤ c g(n)
- Q: How to prove that f(n) is O(g(n))?
 A: Give c and n₀

• Ex 2: f(n) = n + sin(n), g(n) = ???