
Sorting Lower Bound
Radix Sort

http://www.cs.auckland.ac.nz/software/AlgAnim/radixsort.html

What is the min height of a
tree with X external nodes?

Radix sort to the rescue … sort of…
After today, you should be able to…
…explain why comparison-based sorts
need at least O(n log n) time
… explain bucket sort
… explain radix sort
… explain the situations in which radix sort
is faster than O(n log n)

http://www.cs.auckland.ac.nz/software/AlgAnim/radixsort.html

 SortingRaces due Friday

 The sounds of sorting. Radix sort later.
◦ https://www.youtube.com/watch?v=kPRA0W1kECg

https://www.youtube.com/watch?v=kPRA0W1kECg

We can’t do much better than
what we already know how to
do.

 Lower bound for best case?

 A particular algorithm that achieves this?

 Want a function f(N)
such that the worst case running time
for all sorting algorithms is Ω(f(N))

 How do we get a handle on
“all sorting algorithms”?

Tricky!

 We can’t list all sorting algorithms and
analyze all of them
◦ Why not?

 But we can find a uniform representation of
any sorting algorithm that is based on
comparing elements of the array to each
other

 The problem of sorting N elements is at least
as hard as determining their ordering
◦ e.g., determining that a3 < a4 < a1 < a0 < a2

◦ sorting = determining order, then movement

 So any lower bound on all "order-
determination" algorithms is also a lower
bound on "all sorting algorithms"

0 1 2 3 4
58 55 73 5 10

 Let A be any comparison-based algorithm for
sorting an array of distinct elements

 We can draw an EBT that corresponds to the
comparisons that will be used by A to sort an
array of N elements
◦ This is called a sort decision tree
◦ Internal nodes are comparisons
◦ External nodes are orderings

◦ Different algorithms will have different trees

Q1

 Basic idea:
◦ Think of the array as having a sorted part (at the

beginning) and an unsorted part (the rest)

◦ Get the first value in the
unsorted part
◦ Insert it into the correct

location in the sorted part,
moving larger values up to
make room

Repeat until
unsorted
part is
empty

 Minimum number of external nodes in a sort
decision tree? (As a function of N)

 Is this number dependent on the algorithm?

 What’s the height of the shortest EBT with
that many external nodes?

No comparison-based sorting algorithm,
known or not yet discovered, can ever do

better than this!

Q2-4

 Use Stirling's
approximation:

http://en.wikipedia.org/wiki/Stirling%27s_approximation

http://en.wikipedia.org/wiki/File:Stirling's_Approximation.svg
http://en.wikipedia.org/wiki/Stirling's_approximation

 Ω(N log N) is the best we can do if we
compare items

 Can we sort without comparing items?

 Observation:
◦ For N items, if the range of data is less than N, then

we have duplicates

 O(N) sort: Bucket sort
◦ Works if possible values come from limited range

and have a uniform distribution over the range
◦ Example: Exam grades histogram

 A variation: Radix sort

Q5

 A picture is worth 103 words, but an animation is
worth 210 pictures, so we will look at one.

 http://www.cs.auckland.ac.nz/software/AlgAnim
/radixsort.html (good but blocked)

 https://www.youtube.com/watch?v=xuU-
DS_5Z4g&src_vid=4S1L-
pyQm7Y&feature=iv&annotation_id=annotation_
133993417 (video, good basic idea, distracting
zooms)

 http://www.cs.usfca.edu/~galles/visualization/R
adixSort.html (good, uses single array)

Q6-7

http://www.cs.auckland.ac.nz/software/AlgAnim/radixsort.html
https://www.youtube.com/watch?v=xuU-DS_5Z4g&src_vid=4S1L-pyQm7Y&feature=iv&annotation_id=annotation_133993417
http://www.cs.usfca.edu/%7Egalles/visualization/RadixSort.html

 It is O(kn)
◦ Looking back at the radix sort algorithm, what is k?

 Look at some extreme cases:
◦ If all integers in range 0-99 (so, many duplicates if

N is large), then k = _____

◦ If all N integers are distinct, k = ____

Q8-10

	CSSE 230
	Announcements
	A Lower-Bound�on Sorting Time
	What’s the best best case?
	What’s the best worst case?
	What are “all sorting algorithms”?
	First of all…
	Sort Decision Trees
	Insertion Sort
	So what?
	An approximation for log (n!)
	Can we do better than N log N?
	Yes, we can! We can avoid comparing items and still sort. This is fast if the range of data is small.
	Radix sort
	RadixSort is almost O(n)

