

What is the min height of a tree with X external nodes?

CSSE 230

Sorting Lower Bound Radix Sort

Radix sort to the rescue ... sort of...

After today, you should be able to...
...explain why comparison-based sorts need at least $O(n \log n)$ time
... explain bucket sort
... explain radix sort
... explain the situations in which radix sort is faster than $\mathrm{O}(\mathrm{n} \log \mathrm{n})$

Announcements

- SortingRaces due Friday
- The sounds of sorting. Radix sort later.
- https://www.youtube.com/watch?v=kPRA0W1 kECg

A Lower-Bound on Sorting Time

We can't do much better than what we already know how to do.

What's the best best case?

- Lower bound for best case?
- A particular algorithm that achieves this?

What's the best worst case?

- Want a function $f(N)$
such that the worst case running time for all sorting algorithms is $\Omega(f(N))$
- How do we get a handle on "all sorting algorithms"?

What are "all sorting algorithms"?

- We can't list all sorting algorithms and analyze all of them
- Why not?
- But we can find a uniform representation of any sorting algorithm that is based on comparing elements of the array to each other

First of all...

The problem of sorting N elements is at least as hard as determining their ordering

- e.g., determining that $a_{3}<a_{4}<a_{1}<a_{0}<a_{2}$

$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$
58	55	73	5	10

- sorting $=$ determining order, then movement
- So any lower bound on all "orderdetermination" algorithms is also a lower bound on "all sorting algorithms"

Sort Decision Trees

- Let A be any comparison-based algorithm for sorting an array of distinct elements
- We can draw an EBT that corresponds to the comparisons that will be used by A to sort an array of N elements
- This is called a sort decision tree
- Internal nodes are comparisons
- External nodes are orderings

- Different algorithms will have different trees

Insertion Sort

- Basic idea:
- Think of the array as having a sorted part (at the beginning) and an unsorted part (the rest)

$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$
38	44	87	2033	99	1500	100	90	239	748

- Get the first value in the unsorted part
- Insert it into the correct location in the sorted part, moving larger values up to make room

Repeat until unsorted
 part is
 empty

So what?

- Minimum number of external nodes in a sort decision tree? (As a function of N)
- Is this number dependent on the algorithm?
- What's the height of the shortest EBT with that many external nodes?

$$
\lceil\log N!\rceil \approx N \log N-1.44 N=\Omega(N \log N)
$$

No comparison-based sorting algorithm, known or not yet discovered, can ever do better than this!

An approximation for $\log (n!)$

- Use Stirling's approximation:

$\ln n!=n \ln n-n+O(\ln (n))$

Can we do better than $N \log N$?

- $\Omega(N \log N)$ is the best we can do if we compare items
- Can we sort without comparing items?

Observation:

- For N items, if the range of data is less than N , then we have duplicates

O(N) sort: Bucket sort

- Works if possible values come from limited range and have a uniform distribution over the range
- Example: Exam grades histogram
- A variation: Radix sort
- A picture is worth 10^{3} words, but an animation is worth 2^{10} pictures, so we will look at one.
- http://www.cs.auckland.ac.nz/software/AlgAnim /radixsort.html (good but blocked)
- https://www.youtube.com/watch?v=xuUDS_5Z4g\&src_vid=4S1 LpyQm7Y\&feature=iv\&annotation_id=annotation_ 133993417 (video, good basic idea, distracting zooms)
- http://www.cs.usfca.edu/~galles/visualization/R adixSort.html (good, uses single array)

RadixSort is almost $\mathrm{O}(\mathrm{n})$

- It is $\mathrm{O}(\mathrm{kn})$
- Looking back at the radix sort algorithm, what is k ?
- Look at some extreme cases:
- If all integers in range 0-99 (so, many duplicates if N is large), then $\mathrm{k}=\ldots$
- If all N integers are distinct, $\mathrm{k}=$

