
Sorting Lower Bound
Radix Sort

http://www.cs.auckland.ac.nz/software/AlgAnim/radixsort.html

What is the min height of a 
tree with X external nodes?

Radix sort to the rescue … sort of…
After today, you should be able to…
…explain why comparison-based sorts 
need at least O(n log n) time
… explain bucket sort 
… explain radix sort
… explain the situations in which radix sort 
is faster than O(n log n)

http://www.cs.auckland.ac.nz/software/AlgAnim/radixsort.html


 SortingRaces due Friday

 The sounds of sorting. Radix sort later.
◦ https://www.youtube.com/watch?v=kPRA0W1kECg

https://www.youtube.com/watch?v=kPRA0W1kECg


We can’t do much better than 
what we already know how to 
do.



 Lower bound for best case?

 A particular algorithm that achieves this?



 Want a function f(N)
such that the worst case running time 
for all sorting algorithms is Ω(f(N))

 How do we get a handle on
“all sorting algorithms”?

Tricky!



 We can’t list all sorting algorithms and 
analyze all of them
◦ Why not?

 But we can find a uniform representation of 
any sorting algorithm that is based on 
comparing elements of the array to each 
other



 The problem of sorting N elements is at least 
as hard as determining their ordering
◦ e.g.,  determining that a3 < a4 < a1 < a0 < a2

◦ sorting = determining order, then movement

 So any lower bound on all "order-
determination" algorithms is also a lower 
bound on "all sorting algorithms"
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 Let A be any comparison-based algorithm for 
sorting an array of distinct elements

 We can draw an EBT that corresponds to the 
comparisons that will be used by A to sort an 
array of N elements
◦ This is called a sort decision tree
◦ Internal nodes are comparisons
◦ External nodes are orderings

◦ Different algorithms will have different trees

Q1



 Basic idea:
◦ Think of the array as having a sorted part (at the 

beginning) and an unsorted part (the rest)

◦ Get the first value in the
unsorted part
◦ Insert it into the correct

location in the sorted part, 
moving larger values up to 
make room

Repeat until 
unsorted 
part is 
empty



 Minimum number of external nodes in a sort 
decision tree?  (As a function of N)

 Is this number dependent on the algorithm? 

 What’s the height of the shortest EBT with 
that many external nodes?

No comparison-based sorting algorithm, 
known or not yet discovered, can ever do 

better than this!

Q2-4



 Use Stirling's
approximation:

http://en.wikipedia.org/wiki/Stirling%27s_approximation

http://en.wikipedia.org/wiki/File:Stirling's_Approximation.svg
http://en.wikipedia.org/wiki/Stirling's_approximation


 Ω(N log N) is the best we can do if we 
compare items

 Can we sort without comparing items?



 Observation:
◦ For N items, if the range of data is less than N, then 

we have duplicates

 O(N) sort:  Bucket sort
◦ Works if possible values come from limited range 

and have a uniform distribution over the range
◦ Example: Exam grades histogram

 A variation:  Radix sort

Q5



 A picture is worth 103 words, but an animation is 
worth 210 pictures, so we will look at one.

 http://www.cs.auckland.ac.nz/software/AlgAnim
/radixsort.html (good but blocked) 

 https://www.youtube.com/watch?v=xuU-
DS_5Z4g&src_vid=4S1L-
pyQm7Y&feature=iv&annotation_id=annotation_
133993417 (video, good basic idea, distracting 
zooms)

 http://www.cs.usfca.edu/~galles/visualization/R
adixSort.html (good, uses single array)

Q6-7

http://www.cs.auckland.ac.nz/software/AlgAnim/radixsort.html
https://www.youtube.com/watch?v=xuU-DS_5Z4g&src_vid=4S1L-pyQm7Y&feature=iv&annotation_id=annotation_133993417
http://www.cs.usfca.edu/%7Egalles/visualization/RadixSort.html


 It is O(kn)
◦ Looking back at the radix sort algorithm, what is k?

 Look at some extreme cases:
◦ If all integers in range 0-99 (so, many duplicates if 

N is large), then k = _____

◦ If all N integers are distinct, k = ____

Q8-10
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