
Hash table basics

How can hash tables perform both contains() in O(1) time
and add() in amortized O(1) time, given enough space?

hashCode()“rose” mod 3506511 11 rose

…
10
11
12
…

Efficiently putting 5 pounds of
data in a 20 pound bag

 Implementation choices:
◦ TreeSet (and TreeMap) uses a balanced tree: O(log n)
 Uses a red-black tree

◦ HashSet (and HashMap) uses a hash table: amortized
O(1) time

 Related: maps allow insertion, retrieval, and
deletion of items by key:

Since keys are unique, they form a set.
The values just go along for the ride.
We’ll focus on sets.

1. The underlying storage?
Growable array

2. Calculate the index to store an item from
the item itself. How?

Hashcode. Fast but un-ordered.

3. What if that location is already occupied
with another item?

Collision. Two methods to resolve

hashCode()“rose” mod 3506511 11 rose

…
10
11
12
…

void clear()
boolean containsKey(Object key)
V get(Object key)
boolean isEmpty()
V put(K key, V value)
V remove(Object key)
V replace(K key, V value)
int size()

 Array of size m
 n elements with unique keys
 If n ≤ m, then use the key as an array

index.
◦ Clearly O(1) lookup of keys

Diagram from John Morris, University of Western Australia

 Issues?
◦ Keys must be unique.
◦ Often the range of potential keys is much larger

than the storage we want for an array
 Example: RHIT student IDs vs. # Rose students

1

Three step process used for accessing hash tables:
1. Transform key into an integer X
2. Use a calculation on X to generate a natural number Y in

the range [0..m-1]
3. Use Y to index into the hash table array, i.e.,

hTable[Y]

• Step #1 is handled by Java’s hashCode() method
• Step #2’s m is the size of the hash table array
• Step #2 is often implemented by: Y = X mod m

 Using mod operation is called the ‘Division Method’
 ‘Multiplication Methods’ also exist

Javadoc prototype for Object’s hashCode() method:

int hashCode()
Returns a hash code value for the object

2

hashCode()key integer

Required property of Java’s hashCode() method:
• Given x.equals(y), i.e., x is equal to y,

then x.hashCode() = y.hashCode()

Desirable properties:
• Should be fast to calculate
• Should produce integers that have a nice uniform distribution

hashCode(“rose”)= 3506511
hashCode(“hulman”)= -1206158341 (can be negative if overflows)
hashCode(“institute”) = 36682261

 Example: if m = 100:

hashCode(“rose”) = 3506511

hashCode(“hulman”) = -1206158341

hashCode(“institute”) = 36682261

mod
m

11

07*

61

* Note: since the hashCode is an integer, it might be negative…
• If it is negative, add Integer.MAX_VALUE + 1 to make it

positive before you mod. (Same as ANDing with
0x7fffffff, or removing sign bit from two’s complement)

• This mimics what’s actually done in practice: when m is a
power of 2, say 2k, we can just truncate, keeping the last
k bits (instead of taking mod m). Sign bit is lost.

 How Java’s hashCode() is used:

◦ Unless this position is already occupied

a “collision”

3-4

hashCode()“rose” mod 3506511 11 rose

…
10
11
12
…

 Default if you inherit Object’s: memory location
(platform-specific, actually)

 Many JDK classes override hashCode()
◦ Integer: the value itself
◦ Double: XOR first 32 bits with last 32 bits
◦ String: we’ll see shortly!
◦ Date, URL, ...

 Custom classes should override hashCode()
◦ Use a combination of final fields.
◦ If key is based on mutable field, then the hashcode will

change and you will lose it!
◦ Developers often use strings when feasible

5

 Advantages?

 Disadvantages?

// This could be in the String class
public static int hash(String s) {
int total = 0;
for (int i = 0; i < s.length(); i++)
total = total + s.charAt(i);

return total;
}

 Spreads out the values more, and anagrams not an issue.
 What about overflow during computation?
◦ What happens to first characters?

// This could be in the String class
public static int hash(String s) {
int total = 0;
for (int i = 0; i < s.length(); i++)
total = total*256 + s.charAt(i);

return total;
}

 Spread out, anagrams OK, overflow OK.
 This is String’s hashCode() method.
 The (x = 31x + y) pattern is a good one to follow.

 See https://docs.oracle.com/javase/8/docs/api/java/lang/String.html#hashCode--

// This could be in the String class
public static int hash(String s) {
int total = 0;
for (int i = 0; i < s.length(); i++)
total = total*31 + s.charAt(i);

return total;
}

6

https://docs.oracle.com/javase/8/docs/api/java/lang/String.html#hashCode--

 A good hashCode operation distributes keys
uniformly, but collisions will still happen

 hashCode() are ints only ~4 billion unique values.
◦ How many 16 character ASCII strings are possible?

 If n is small, tables should be much smaller
◦ mod will cause collisions too!

 Solutions:
◦ Chaining
◦ Probing (Linear, Quadratic)

7

hashCode()“rose” mod 3506511 11 rose

…
10
11
12
…

Java’s HashMap uses chaining and a table
size that is a power of 2.

8

Grow in another direction Examples: .get(“at”), .get(“him),
(hashcode=18), .add(“him”), .delete(“with”)

9-10

m array slots,
n items.
Load factor, λ=n/m.

Runtime = O(λ)

Space-time trade-off
1. If m constant, then this is O(n). Why?

2. If keep m~0.5n (by doubling), then this is amortized O(1). Why?

 No need to grow in second direction

 No memory required for pointers
◦ Historically, this was important!
◦ Still is for some data…

 Will still need to keep load factor (λ=n/m) low
or else collisions degrade performance
◦ We’ll grow the array again

 Probe H (see if it causes a collision)
 Collision? Also probe the next available space:
◦ Try H, H+1, H+2, H+3, …
◦ Wraparound at the end of the array

 Example on board: .add() and .get()

 Problem: Clustering

 Animation:
◦ http://www.cs.auckland.ac.nz/software/AlgAnim/hash_ta

bles.html
◦ Applet deprecated on most browsers.
◦ See next slide for a few freeze-frames.

11

http://www.cs.auckland.ac.nz/software/AlgAnim/hash_tables.html

 For probing to work, 0 ≤ λ ≤ 1.

 For a given λ, what is the expected number
of probes before an empty location is found?

 Assume all locations are equally likely to be
occupied, and equally likely to be the next
one we look at.

 λ is the probability that a given cell is full, 1-
λ the probability a given cell is empty.

 What’s the expected number of probes?

12

From https://en.wikipedia.org/wiki/List_of_mathematical_series:

If λ = 0.5
Then 1

1 − 0.5
= 2

 Clustering!
◦ Blocks of occupied cells are formed
◦ Any collision in a block makes the block bigger

 Two sources of collisions:
◦ Identical hash values
◦ Hash values that hit a cluster

 Actual average number of probes for large λ:

For a proof, see Knuth, The Art of Computer Programming, Vol 3:
Searching Sorting, 2nd ed, Addision-Wesley, Reading, MA, 1998.
(1st edition = 1968)

13

 Easy to implement
 Works well when load factor is low
◦ In practice, once λ > 0.5, we usually double the size

of the array and rehash
◦ This is more efficient than letting the load factor

get high
 Works well with caching

 Reminder: Linear probing:
◦ Collision at H? Try H, H+1, H+2, H+3,...

 New: Quadratic probing:
◦ Collision at H? Try H, H+12. H+22, H+32, ...
◦ Eliminates primary clustering. “Secondary

clustering” isn’t as problematic

 Choose a prime number for the array size, m
 Then if λ ≤ 0.5:
◦ Guaranteed insertion
 If there is a “hole”, we’ll find it

◦ So no cell is probed twice

 Can show with m=17, H=6.

14

For a proof, see Theorem 20.4:
Suppose the table size is prime, and that we repeat a probe
before trying more than half the slots in the table
See that this leads to a contradiction

Use an algebraic trick to calculate next index
◦ Difference between successive probes yields:
 Probe i location, Hi = (Hi-1 + 2i – 1) % M

1. Just use bit shift to multiply i by 2
 probeLoc= probeLoc + (i << 1) - 1;
…faster than multiplication

2. Since i is at most M/2, can just check:
 if (probeLoc >= M)

probeLoc -= M;
…faster than mod

When growing array, can’t double!
◦ Can use, e.g., BigInteger.nextProbablePrime()

 No one has been able to analyze it!
 Experimental data shows that it works well
◦ Provided that the array size is prime, and λ < 0.5

15-17

 Finish the quiz.
 Then check your answers with the next slide

Structure insert Find value Find max value
Unsorted array
Sorted array
Balanced BST
Hash table

Structure insert Find value Find max value
Unsorted array Amortized θ(1) θ(n) θ(n)
Sorted array θ(n) θ(log n) θ(1)
Balanced BST θ(log n) θ(log n) θ(log n)
Hash table Amortized θ(1) θ(1) θ(n)

 Constants matter!

 727MB data, ~190M elements
◦ Many inserts, followed by many finds
◦ Microsoft's C++ STL

 Why?
 Sorted arrays are nice if they don’t have to be

updated frequently!
 Trees still nice when interleaved insert/find

Structure build (seconds) Size (MB) 100k finds (seconds)
Hash map 22 6,150 24
Tree map 114 3,500 127
Sorted array 17 727 25

 Why use 31 and not 256 as a base in the
String hash function?

 Consider chaining, linear probing, and
quadratic probing.
◦ What is the purpose of all of these?
◦ For which can the load factor go over 1?
◦ For which should the table size be prime to avoid

probing the same cell twice?
◦ For which is the table size a power of 2?
◦ For which is clustering a major problem?
◦ For which must we grow the array and rehash every

element when the load factor is high?

…Next week‘s Small Programming HW 4 is
StringHashSet – it will be posted by tonight –
good idea to work on it after Milestone 2 is
completed

…is acceptable to use for EditorTrees Milestone
2 group worktime, especially if you have
questions for me

	CSSE 230
	Hashing
	Reminder: sets hold unique items
	Big ideas of hash tables
	HashMap<K,V> – Method Summary (some, not all)
	Direct Address Tables�
	When Direct Address Tables are not feasible …
	We attempt to create unique keys �by applying a .hashCode() function …
	…and then take it mod the table size (m) to get an index into the array.
	Index calculated from the object itself, not from a comparison with other objects
	Some hashCode() implementations
	A simple hashCode function for Strings is a function of every character
	A better hashCode function for Strings uses place value
	A better hashCode function for Strings uses place value with a base that’s prime
	Collisions are inevitable
	Separate chaining: an array of linked lists
	Runtime of hashing with chaining depends on the load factor
	Alternative: Store collisions in other array slots.
	Collision Resolution: Linear Probing
	Clustering Example
	Linear probing efficiency also depends on load factor, = n/m
	Rough Analysis of Linear Probing
	Start Here for 2nd Day on Hashing
	Better Analysis of Linear Probing
	Why consider linear probing?
	To reduce clustering, probe farther apart
	Quadratic Probing works best with low l and prime m
	Slide Number 30
	Quadratic probing analysis
	Summary: �	Hash tables are fast for some operations
	Answers:
	In practice
	Review: discuss with a partner
	Today’s worktime

