CSSE 230 Day 13

AVL trees and rotations

This week, you should be able to...

...perform rotations on height-balanced trees,
on paper and in code

... write a rotate() method

... search for the kth item in-order using rank



Announcements

. Term project partners posted
e Sit with partner(s) now.
« Read the spec before tomorrow and start planning.

. Exam 2 next class

e 15t 25 minutes for Day #14 slides
 Remaining 80 minutes for Exam #?2



Exam 2 next class:
Recursive tree traversal methods follow this format

Consider method fooTraverse() defined in BinaryNode class:

fooTraverse()

If base case:
e Return the appropriate value
If not at base case:
e 1. Compute a value for current node
« 2. Call left.fooTraverse() and right.fooTraverse()
e 3. Combine all results and return it

. This is O(n) if the computation on the node is constant-time

. Style: pass info through parameters and return values.
« Do not declare and use extra instance variables (fields) in BinaryTree class



Exam 2 next class:
Recursive tree navigation methods follow this format

Consider method fooNavigate() defined in BinaryNode class

fooNavigate()

If base case:
* Do required work at target location navigated to
If not at base case:
* 1. Compute which subtree to navigate into
« 2. Call either left.fooNavigate() or right.fooNavigate()
* 3. Do (optional) work after the recursive call

. This is O(height) and if the BST is height-balanced then O(log(n))

. Style: pass info through parameters and return values.
« Do not declare and use extra instance variables (fields) in BinaryTree class



Summary: for fast tree operations, we must Ql
keep tree somewhat balanced in O(log n) time

Total time to do insert/delete =

e Time to find the correct place to insert = O(height) e
e + time to detect an imbalance

« + time to correct the imbalance e Q
And if don’t bother with balance after insertions and
®Q © Q@
If try to keep perfect balance:
» Heightis O(log n) BUT ... @ @
e But maintaining perfect balance requires O(n) work

Height-balanced trees are still O(log n) ’;11\
e |Height(left) - Height(right)| < 1 45
- For T with height h, N(T) > Fib(h+3) - 1 ,ﬁ]\/ \/515\
* SoH<1.44log (N+2)-1.328* 0 -

1]
AVL (Adelson-Velskii and Landis) trees maintain height- fﬁ
balance using rotations

Are rotations O(log n)? We’'ll see...



Q2
AVL tree nodes are just like BinaryNodes,

but also have an extra field to store a “balance code”

or or

/ : Current node's left subtree is taller by 1 than its right subtree
= : Current node's subtrees have equal height
\ : Current node's right subtree is taller by 1 than its left subtree

Two possible data representations for: /| = \
« Use just two bits, e.qg., in a low-level language
e Use enum type in a higher-level language like Java



Using balance codes makes AVL Tree Q3
rebalancing efficient: O(log n)

. Assume tree is height-balanced before insertion

. Insert as usual for a BST

. Move up from the newly inserted node
to the lowest “unbalanced” node (if any)

e Use the balance code to detect unbalance -
how?

 Why is this O(log n)?
« We move up the tree to the root in worst case,
NOT recursing into subtrees to calculate heights

. Do an appropriate rotation (see next slides) to

balance the subtree rooted at this unbalanced
node




Four types of rotations are required to remove
different cases of tree imbalances

. For example, a single left rotation:

new




We rotate by pulling the “too tall” sub-tree up
and pushing the “too short” sub-tree down

. Two basic cases:

e “Seesaw” case:
e Too-tall sub-tree is on the outside
e So tip the seesaw so it’s level

e “Suck in your gut” case:
e Too-tall sub-tree is in the middle
e Pull its root up a level



Single Left Rotation Q4-5

Unbalanced node

becomes

"y
P

Middle sub-tree
attaches to lower node
of the “see saw”

Diagrams are from Data Structures by E.M. Reingold and W.J. Hansen



Double Left Rotation Q6-7

Unbalanced node

becomes B

4
a |lh+1 "
Y ¥ P .
v/ or) \_2 Y
new new
(h)

Split between the
nodes pushed down

Weiss calls this “right-left double rotation”



Your turn — work with a partner Q8

becomes

-

P new

. Write the method:

. static BalancedBinaryNode singleRotatelLeft (
BalancedBinaryNode parent, /* A */
BalancedBinaryNode child /B */ ) {

}

. Returns a reference to the new root of this subtree.
. Don’t forget to set the balanceCode fields of the nodes.



Your turn — work with a partner

parent.left - holds the reference to root node of )

parent.right - holds the reference to child node, i.e.. to node

child.left - holds the reference to root node l:uﬂ":

child.right - holds the reference to root node of I

. Write the method:

. static BalancedBinaryNode singleRotatelLeft (
BalancedBinaryNode parent, /> A */
BalancedBinaryNode child /B */ ) {

}

. Returns a reference to the new root of this subtree.
. Don’t forget to set the balanceCode fields of the nodes.

Q8



More practice— (sometime after class)

. Write the method:

- BalancedBinaryNode doubleRotateRight (
BalancedBinaryNode parent, /> A */
BalancedBinaryNode child, /> C */

BalancedBinaryNode grandChild /* B */ ) {

}

. Returns a reference to the new root of this subtree.

. Rotation is mirror image of double rotation from an
earlier slide



O(log N)? Q9,Q1,Q10-11

. If you have to rotate after insertion, you can
stop moving up the tree:

* Both kinds of rotation leave height the same as
before the insertion!

s insertion plus rotation cost really O(log N)?

nsertion/deletion in AVL Tree: O(log n)
-ind the imbalance point (if any): O(log n)
Single or double rotation: O(1)
Total work: O(log n)
Foreshadow:

for deletion # of rotations: O(log N)



Term Proje

2. Insertion/deletion by index, nc



Examples:

. EditorTree et = new EditorTree()

. et.add(‘a’) // append to end

. et.add(‘b’) // same

. et.add(‘c’) // same. Rebalance!

. et.add(‘d’, 2) // where does it go?
. et.add(‘e’)

. et.add(‘f’, 3)

. Notice the tree is height-balanced (so height
= O(log n) ), but not a BST



To find index quickly, add a rank field to
BinaryNode

. Gives the in-order position of this node
within its own subtree

O-based
e i.e., rank = the size of its left subtree indexing

. How would we do get(pos)?

- Insert and delete start similarly



Rank and position of element in tree

EditorTree t5

Suppose EditorTree’s toString method performs an
in—order traversal

Then:
String s2 = t5.toString(); // s2 = “SLIPPERY”

Character ‘S’ is at position 0, and has rank 0
Character ‘L’ is at position 1, and has rank 1
Character ‘I’ is at position 2, and has rank O
Character ‘P’ is at position 3, and has rank 1
Character ‘P’ is at position 4, and has rank O
Character ‘E’ is at position 5, and has rank 5
Character ‘R’ is at position 6, and has rank O
Character Y’ is at position 7, and has rank 1

e |s2| =8




Legend:

label

= B X

M= P=0} 5=0[ U=0




With your EditorTi

Read the specification ¢

starting code



	CSSE 230 Day 13
	Announcements
	Exam 2 next class: �Recursive tree traversal methods follow this format
	Exam 2 next class: �Recursive tree navigation methods follow this format
	Summary: for fast tree operations, we must keep tree somewhat balanced in O(log n) time
	AVL tree nodes are just like BinaryNodes, �but also have an extra field to store  a “balance code”
	Using balance codes makes AVL Tree rebalancing efficient: O(log n)
	Four types of rotations are required to remove different cases of tree imbalances
	We rotate by pulling the “too tall” sub-tree up and pushing the “too short” sub-tree down
	Single Left Rotation
	Double Left Rotation
	Your turn  work with a partner 
	Your turn  work with a partner 
	More practice (sometime after class)
	O(log N)?
	Term Project: EditorTrees
	Examples:
	To find index quickly, add a rank field to BinaryNode
	Rank and position of element in tree
	Slide Number 20
	With your EditorTrees team

