
Download BinarySearchTree .zip archive from Moodle Day 6

Intro to Trees

After today, you should be able to…
…use tree terminology
…write recursive tree functions

 Review Day 5’s quizzes on Java Collections
and Data Structures

 Preview of HW3: includes an essay

Q1–2

 It must be O(n), so you can’t grow your strings

 character-by-character:
◦ Strings are immutable, so characters must be copied.

s += “*” is as slow growing an array using the +1
scheme

 Solution? Use a StringBuilder!
◦ They have internal capacity, which doubles when full!

 See the example at the end of Warmup and
Stretching’s ShapeTest.java for an example.

 Exam 1 – Thursday next week: 7-9 pm
◦ Coverage:

 Everything from reading and lectures, Sessions 1-7

 Programs: Warmup, Stacks and Queues

 Homeworks 1-2

◦ Allowed resources:
 Written part: ½ of one side of 8.5 x 11 paper

 Goal: to let you use formulas but force you to summarize.

 Programming part:
 Textbook

 Eclipse (including programs you have written for CSSE230)

 CSSE230 web pages and materials on Moodle

 Java API documentation – bookmark these in your browser

 Two previous 230 Exam 1’s are available in Moodle

1

◦ Written (50-70%):

 Growable Arrays

 MCSS

 big O/q/W: true/false, using definitions, code
analysis

 Binary search

 ADT/Collections

 Choosing an ADT to solve a given problem

◦ Programming (30-50%):

 Implementing an ADT using an array, nodes, or
another ADT

 Writing an efficient algorithm to solve a simple
array-based problem

http://comics.com/frank&ernest/2010-12-13/

 an implementation that offers interesting
benefits, but is more complex to code than
arrays or lists…

 … Trees!

Introduction and terminology
for three types

Binary Search Trees

Binary Trees

Trees

?

 Class hierarchy tree (single inheritance only)

 Directory tree in a file system

 A collection of nodes

 Nodes are connected by directed edges.
◦ One special root node has no incoming edges
◦ All other nodes have exactly one incoming edge

 One way that Computer Scientists
are odd is that our trees
usually have their root at
the top!

 How are trees like a linked list?

 How are they different?

 Parent

 Child

 Grandparent

 Sibling

 Ancestors and descendants

 Proper ancestors, proper descendants

 Subtree

 Leaf, interior node

 Depth and height of a node

 Height of a tree

Q3-7

Which is larger, the sum of
the heights or the sum of the
depths of all nodes in a tree?

The height of
a tree is the
height of its
root node.

 A Binary Tree is either
◦ empty, or

◦ consists of:

 a distinguished node called the root, which contains an
element, and

 A left subtree TL, which is a binary tree

 A right subtree TR, which is a binary tree

 Binary trees contain
at most 2 children

root

TL

TR

 A binary tree with the Search Property:
◦ Every element in the left subtree is smaller than the

root, and every element in the right subtree is
larger than the root. And this is true at every node,
not just the root.

 Compare: search on
◦ Binary tree?

◦ Binary Search Tree?

Q8-10

 (Review) Write size() for linked list
◦ Non-recursively

◦ Recursively

 Write size() for a tree
◦ Recursively

◦ Non-recursively (later)

 What are characteristics of correct, efficient
recursive code?

Q11

 Let’s start the BinarySearchTrees assignment:
implement a BinaryTree<T> class

1

2

3

4

5

6

Test tree:

A single tiny
recursive method for
size will touch every
node in the tree.
Let’s write, then
watch in debugger.

