
Growable Arrays Continued

Big-Oh notation

Submit Growable Array exercise



 Growable Array recap

 Big-Oh definition

 After today, you’ll be able to 
◦ Use the term amortized appropriately in analysis

◦ State the formal definition of big-Oh notation



 You will not usually need the textbook in 
class

 All should do piazza introduction post (a 
few students left)

 Turn in GrowableArrays now.

 Quiz problems 1–5. Do on your own, then 
compare with a neighbor.

Q1-5



 See syllabus for exam weighting and caveats. 

 Note evening exams

 Think of every program you write as a 
practice test
◦ Especially TreePractice Small Programming HW and 

Exam 2 (programming only)



Properties of logarithms

𝑙𝑜𝑔𝑏 𝑥𝑦 = 𝑙𝑜𝑔𝑏 𝑥 + 𝑙𝑜𝑔𝑏 𝑦

𝑙𝑜𝑔𝑏 ൗ𝑥 𝑦 = 𝑙𝑜𝑔𝑏 𝑥 − 𝑙𝑜𝑔𝑏 𝑦

𝑙𝑜𝑔𝑏 𝑥𝛼 = 𝛼𝑙𝑜𝑔𝑏 𝑥

𝑙𝑜𝑔𝑏 𝑥 =
𝑙𝑜𝑔𝑎 𝑥

𝑙𝑜𝑔𝑎 𝑏

𝑎𝑙𝑜𝑔𝑏 𝑛 = 𝑛𝑙𝑜𝑔𝑏 𝑎

Properties of exponents

𝑎 𝑏+𝑐 = 𝑎𝑏𝑎𝑐

𝑎𝑏𝑐 = 𝑎𝑏
𝑐

ൗ𝑎𝑏
𝑎𝑐 = 𝑎 𝑏−𝑐

𝑏 = 𝑎𝑙𝑜𝑔𝑎(𝑏)

𝑏𝑐 = 𝑎𝑐∗𝑙𝑜𝑔𝑎(𝑏)



Simplify: Note that log n (without a specified) base means log2n.

Also, log n is an abbreviation for log(n).

1. log (2 n log n)

2. log(n/2)

3. log (sqrt (n))

4. log (log (sqrt(n)))

5. log4 n

6. 22 log n

7. if n=23k - 1, solve for k.

Where do logs come from in algorithm analysis?



Simplify: Note that log n (without a specified) base means log2n.

Also, log n is an abbreviation for log(n).

1. 1+log n + log log n

2. log n - 1

3. ½ log n

4. -1 + log log n

5. (log n) / 2

6. n2

7. n+1=23k

log(n+1)=3k

k= log(n+1)/3

A: Any time we cut things in half at each step 
(like binary search or mergesort)



◦ Short but intense! ~50 lines of code total in our 
solutions

◦ Be sure to read the description of how it will be 
graded. Note how style will be graded.

◦ Demo: Running the JUnit tests for test, file, 
package, and project

◦ PriorityQueue

◦ Loop engineering



 About Homework 1?
◦ Aim to complete tonight, since it is due after next 

class

◦ It is substantial

◦ The last problem (the table) is worth lots of points!

 About the Syllabus?

Q2-3



How many times is line 4 executed?

1 int sum = 0;

2 for (int k = 4; k < n; k++)

3 for (int j = 0; j <= n; j++)

4 sum++;

Why is this one so easy? 

Does the inner loop depend on outer loop?

What if inner loop were (int j = 0; j <= k ; j++)?



How many times is line 2 executed?

1 for (int k = 1; k <= n; k *= 2)

2 sum++;

Be precise:
using floor/ceiling as needed, to earn full credit



Daring to double



200



 Doubling each time:
◦ Assume that N = 5 (2k) + 1.

 Total # of array elements copied:
k N EN-Doubling

I.e., # times line 38 executed

0 6 5

1 11 5 + 10 = 15

2 21 5 + 10 + 20 = 35

3 41 5 + 10 + 20 + 40 = 75

4 81 5 + 10 + 20 + 40 + 80 = 155

k = 5 (2k) + 1 5(1 + 2 + 4 + 8 + … + 2k)

Express as a closed-form expression in 
terms of K, then express in terms of N



 Assume that N = 5 (2k) + 1.

 Total # of array elements copied 
= 5(1 + 2 + 4 + 8 + … + 2k)

 Do in terms of k, then in terms of N 



 Total # of array elements copied:

N EN-Add1
I.e., # times line 38 executed

6 5 

7 5 + 6

8 5 + 6 + 7 

9 5 + 6 + 7 + 8 

10 5 + 6 + 7 + 8 + 9

N ???

Express as a closed-form 
expression in terms of N



 What’s the amortized cost of adding an 
additional string…
1. in the doubling case?
2. in the add-one case?

Amortized cost means the “average per-operation cost” while 
adding to a single GrowableArray many times.

Do the following to get answer for Q6 & Q7:

1. EN-Doubling/N = ?
2. EN-Add1/N = ?

 So which method for increasing array size 
should be used?

• Q6-7





 Algorithms may have different time 
complexity on different data sets

 What do we mean by "Worst Case"?

 What do we mean by "Average Case"?

 What are some application domains where 
knowing the Worst Case time complexity 
would be important?

 http://cacm.acm.org/magazines/2013/2/160173-the-tail-
at-scale/fulltext

http://cacm.acm.org/magazines/2013/2/160173-the-tail-at-scale/fulltext




Worst-case:
O(n)

amortized:
O(1)



Big-Oh



 We only care what happens when N gets large, 
where N is the size of the input

 Is the function linear?  quadratic? exponential?

 running time - # of instructions executed as a 
function of N

 observed running time – amount of clock time 
required to execute code as a function of N



Figure 5.1
Running times for small inputs

Data Structures & Problem Solving using JAVA/2E Mark Allen Weiss      © 2002  Addison Wesley

(linear looks 
constant for 
small inputs)



Figure 5.2
Running times for moderate inputs

Data Structures & Problem Solving using JAVA/2E Mark Allen Weiss      © 2002  Addison Wesley



Performance Analysis Basics
Come up with a math function f(n) such that it 
does the following:

• input: n = size of the problem to be solved by 
the algorithm

• output: y = f(n) - the 
number of instructions 
executed (running 
time)

• Only care about 
Quadrant I



Figure 5.3
Functions in order of increasing growth rate

Data Structures & Problem Solving using JAVA/2E Mark Allen Weiss      © 2002  Addison Wesley

a.k.a "log linear"

The answer to most big-

Oh questions is one of 

these functions



Steps:

1. Drop lower order terms 

2. Change constant coefficients to 1

 7n1 – 3n0 becomes O(n)

 8n2log(n) + 5n2 + n becomes O(n2log(n))



 Given functions f(n) and g(n), we say that f(n) is O(g(n)) if and 
only if there exist constants c > 0 and n0 ≥ 0 such that

f(n) ≤ c g(n) for all n ≥ n0.

 For this to make sense, f(n) and g(n) should be functions over 
non-negative integers.

Q8



 A function f(n) is (in) O(g(n)) if there exist two 

positive constants c and n0 such that for all  n n0,  
f(n)  c g(n)

 Q: How to prove that f(n) is O(g(n))? 
A: Give c and n0

 Ex: f(n) = 4n + 15, g(n) = ???.     

Assume that all functions have non-negative 
values, and that we only care about n≥0.  For 
any function g(n), O(g(n)) is a set of functions. 

Q9



 A function f(n) is (in) O(g(n)) if there exist two 

positive constants c and n0 such that for all  n n0,  
f(n)  c g(n)

 Q: How to prove that f(n) is O(g(n))? 
A: Give c and n0

 Ex 2: f(n) = n + sin(n), g(n) = ??? 

Q10


