

CSSE 230 Day 2

Growable Arrays Continued Big-Oh notation

Submit Growable Array exercise

Agenda and goals

- Growable Array recap
- Big–Oh definition
- After today, you'll be able to
 - Use the term *amortized* appropriately in analysis
 - State the formal definition of big-Oh notation

Announcements and FAQ

- You will not usually need the textbook in class
- All should do piazza introduction post (a few students left)
- Turn in GrowableArrays now.
- Quiz problems 1-5. Do on your own, then compare with a neighbor.

You must demonstrate programming competence on exams to succeed

- See syllabus for exam weighting and caveats.
- Note evening exams
- Think of every program you write as a practice test
 - Especially TreePractice Small Programming HW and Exam 2 (programming only)

Review these as needed

Properties of logarithms

Properties of exponents

$$log_b(xy) = log_b(x) + log_b(y) \qquad a^{(b+c)} = a^b a^c$$

$$log_b(x/y) = log_b(x) - log_b(y) \qquad a^{bc} = (a^b)^c$$

$$log_b(x^{\alpha}) = \alpha log_b(x) \qquad a^b/_{a^c} = a^{(b-c)}$$

$$log_b(x) = \frac{log_a(x)}{log_a(b)} \qquad b = a^{log_a(b)}$$

$$a^{log_b(n)} = n^{log_b(a)} \qquad b^c = a^{c*log_a(b)}$$

Practice with exponentials and logs (Do these with a friend after class, not to turn in)

Simplify: Note that $\log n$ (without a specified) base means $\log_2 n$. Also, $\log n$ is an abbreviation for $\log(n)$.

- **1.** log (2 n log n)
- 2. $\log(n/2)$
- **3.** log (sqrt (n))
- 4. log (log (sqrt(n)))

Where do logs come from in algorithm analysis?

Solutions No peeking!

Simplify: Note that $\log n$ (without a specified) base means $\log_2 n$. Also, log n is an abbreviation for $\log(n)$.

- 1. $1 + \log n + \log \log n$
- 2. log n 1
- 3. $\frac{1}{2} \log n$
- 4. $-1 + \log \log n$

5.
$$(\log n) / 2$$

6.
$$n^2$$

7.
$$n+1=2^{3k}$$

log(n+1)=3k

$$k = log(n+1)/3$$

A: Any time we cut things in half at each step (like binary search or mergesort)

Warm Up and Stretching thoughts

- Short but intense! ~50 lines of code total in our solutions
- Be sure to read the description of how it will be graded. Note how style will be graded.
- Demo: Running the JUnit tests for test, file, package, and project
- PriorityQueue
- Loop engineering

Questions?

- About Homework 1?
 - Aim to complete tonight, since it is due after next class
 - It is substantial
 - The last problem (the table) is worth lots of points!
- About the Syllabus?

Homework 1 help

How many times is line 4 executed?

$$1 \text{ int sum} = 0;$$

- 2 for (int k = 4; k < n; k++)
- 3 **for** (int j = 0; j <= n; j++)

4 sum++;

Why is this one so easy? Does the inner loop depend on outer loop? What if inner loop were (int j = 0; j <= k ; j++)?

Homework 1 help

How many times is line 2 executed?

Be precise:

using floor/ceiling as needed, to earn full credit

Growable Arrays Exercise Daring to double

Growable Arrays Table

Ν	$\mathbf{E}_{\mathbf{N}}$	Answers for problem 2
4	0	0
5	0	0
6	5	5
7	5	5 + 6 = 11
10	5	5 + 6 + 7 + 8 + 9 = 35
11	5 + 10 = 15	5 + 6 + 7 + 8 + 9 + 10 = 45
20	15	sum(i, i=519) = 180 using Maple
21	5 + 10 + 20 = 35	sum(i, i=520) = 200
40	35	sum(i, i=539) = 770
41	5 + 10 + 20 + 40 = 75	sum(i, i=540) = 810

Doubling the Size

- Doubling each time:
 - Assume that $N = 5 (2^k) + 1$.
- Total # of array elements copied:

k	Ν	E _N -Doubling I.e., # times line 38 executed
0	6	5
1	11	5 + 10 = 15
2	21	5 + 10 + 20 = 35
3	41	5 + 10 + 20 + 40 = 75
4	81	5 + 10 + 20 + 40 + 80 = 155
k	$= 5 (2^k) + 1$	$5(1 + 2 + 4 + 8 + + 2^k)$

Express as a closed-form expression in terms of K, then express in terms of N

Doubling the Size (solution)

- Assume that $N = 5 (2^k) + 1$.
- Total # of array elements copied = 5(1 + 2 + 4 + 8 + ... + 2^k)
- Do in terms of k, then in terms of N

Adding One Each Time

Total # of array elements copied:

	Ν	E _N -Add1 I.e., # times line 38 executed		
	6	5		
	7	5 + 6		
	8	5 + 6 + 7		
	9	5 + 6 + 7 + 8		
	10	5 + 6 + 7 + 8 + 9		
	Ν	???		
X X	press as a close pression in tern	d-form 1s of N		

• Q6-7

Conclusions

What's the amortized cost of adding an additional string...

- 1. in the doubling case?
- 2. in the add-one case?

Amortized cost means the "average per-operation cost" while adding to a single GrowableArray many times.

Do the following to get answer for Q6 & Q7:

- 1. E_N -Doubling/N = ?
- 2. $E_N Add1/N = ?$
- So which method for increasing array size should be used?

Algorithm Analysis: Running Time

Running Times

- Algorithms may have different time complexity on different data sets
- What do we mean by "Worst Case"?
- What do we mean by "Average Case"?
- What are some application domains where knowing the Worst Case time complexity would be important?
- http://cacm.acm.org/magazines/2013/2/160173-the-tailat-scale/fulltext

Average Case and Worst Case

Worst-case vs amortized cost for adding an element to an array using the doubling scheme

amortized: O(1)

> Note: average case means averaged over *input domain*, amortized cost means averaged over *many uses*.

Notation for Asymptotic Analysis

Big-Oh

Asymptotic Analysis

- We only care what happens when N gets large, where N is the size of the input
- Is the function linear? quadratic? exponential?
- *running time* # of instructions executed as a function of N
- observed running time amount of clock time required to execute code as a function of N

Figure 5.1 Running times for small inputs

Figure 5.2

Running times for moderate inputs

Performance Analysis Basics

Come up with a math function f(n) such that it does the following:

- input: n = size of the problem to be solved by the algorithm
 - output: y = f(n) the number of instructions executed (*running time*)
 - Only care about Quadrant I

Figure 5.3

Functions in order of increasing growth rate

		The answer to most big-
Function	Name	Oh questions is one of
С	Constant	these functions
$\log N$	Logarithmic	
$\log^2 N$	Log-squared	
Ν	Linear	
$N \log N$	N log N	a.k.a "log linear"
N ²	Quadratic	
N ³	Cubic	
2^N	Exponential	

Simple Rule for Big-Oh

Steps:

- 1. Drop lower order terms
- 2. Change constant coefficients to 1

7n¹ – 3n⁰ becomes O(n)

8n²log(n) + 5n² + n becomes O(n²log(n))

Formal Definition of Big-Oh

- Given functions f(n) and g(n), we say that f(n) is O(g(n)) if and only if there exist constants c > 0 and n₀ ≥ 0 such that
 f(n) ≤ c g(n) for all n ≥ n₀.
- For this to make sense, f(n) and g(n) should be functions over non-negative integers.

To *prove* Big Oh, find 2 constants and show they work

- A function f(n) is (in) O(g(n)) if there exist two positive constants c and n₀ such that for all n≥ n₀, f(n) ≤ c g(n)
- Q: How to prove that f(n) is O(g(n))?
 A: Give c and n₀

Assume that all functions have non-negative values, and that we only care about $n \ge 0$. For any function g(n), O(g(n)) is a set of functions.

• Ex: f(n) = 4n + 15, g(n) = ???.

To *prove* Big Oh, find 2 constants Q10 and show they work

- A function f(n) is (in) O(g(n)) if there exist two positive constants c and n₀ such that for all n≥ n₀, f(n) ≤ c g(n)
- Q: How to prove that f(n) is O(g(n))? A: Give c and n₀

Ex 2: f(n) = n + sin(n), g(n) = ???