Pick up an in-class quiz from the table near the door

CSSE 230 Data Structures and Algorithm Analysis Day 1

$$
\sum_{i=1}^{n} i=1+2+3+\ldots+n=\frac{n^{2}+n}{2}
$$

- two visual representations

Brief Course Intro Math Review
Growable Array Analysis

Student Introductions

- Roll call
- Introduce yourself to the person next to you
- I'll soon post an assignment to Moodle that asks you to share more with classmates on a Piazza discussion forum, e.g., what's your favorite food, what are your hobbies, types of work you've done, etc.

Introductions

- Joe Hollingsworth, aka Dr. Holly
- At R-H since 2018. CSSE 220 in FallQ
- B.S. Indiana University, CS
- M.S. Purdue University, CS
- Ph.D. Ohio State University, Software Engineering
- Special interests in formal methods, software design, how to best teach computing
- Courses taught at Rose:
- CSSE220 (FallQ 2018), CSSE230 (WinterQ 2019)
- Hobbies: cycling, running, learning Spanish, travel

Goal: independently design, develop, and debug software that uses correct, clear, and efficient algorithms and data structures

Why efficient algorithms?

 Here's \$1,000,000,000:

- Find serial number KB46279860I
- If unsorted, you could look at all 10 million bills.
- If sorted by serial number, binary search finds it by only looking at ____- bills.

How to succeed in CSSE230

- Work hard
- Re-do CSSE220 stuff as needed to make sure your foundations (recursion and linked lists) are strong
- Take initiative in learning
- Read the text, search Javadocs, come for help
- Focus while in this class
- https://www.rose-
hulman.edu/class/cs/csse230/201820/MiscDocuments/LaptopsA reGreatButNotDuringaLectureoraMeeting.pdf (11/26/2017 NYT)
- Start early and plan for no all-nighters
- Two assignments each week: 1 homework set and 1 major program
- Never give or use someone else's answers

Tools

- Moodle Site:
https://moodle.rose-hulman.edu/course/view.php?id=49906
- schedule, reading/HW/program assignments, room \#s!
- Read the Syllabus: Tomorrow's quiz will start with questions about it.
- gradebook, homework pdf turn-in, peer evaluations, solutions
- www.piazza.com, not email: homework questions and announcements
- If you email me, l'll reply, "Great question! Please post it to Piazza"
- It should auto-email you whenever there is a post.
, moodle.rose-hulman.edu: gradebook, homework pdf turn-in, peer evaluations, solutions

After today's class, you will be able to...

- analyze runtimes of code snippets by counting instructions.
- explain why arrays need to grow as data is added.
- derive the average and worst case time to insert an item into an array [GrowableArray exercise]

Analysis/Math Review

Notation

- Floor

$$
\lfloor x\rfloor=\text { the largest integer } \leq x
$$

- Ceiling

$$
\lceil x\rceil=\text { the smallest integer } \geq x
$$

- java. lang. Math, provides the static methods floor () and ceil()

Summations

- Summations
- general definition:
$\sum_{i=s}^{t} f(i)=f(s)+f(s+1)+f(s+2)+\ldots+f(t)$
- where f is a function, s is the start index, and t is the end index

Geometric progressions: each term is a constant multiple of the previous term

- Geometric progression: $f(i)=a^{i}$
- given an integer $n \geq 0$ and a real number $0<a \neq 1$

$$
\sum_{i=0}^{n} a^{i}=1+a+a^{2}+\ldots+a^{n}=\frac{1-a^{n+1}}{1-a} \begin{gathered}
\text { Memorize } \\
\text { this } \\
\text { formula! }
\end{gathered}
$$

- geometric progressions exhibit exponential growth

Exercise: What is $\sum_{i=2}^{6} 3^{i}$?
This will be useful for today's
The sum can also be written:

$$
\frac{a^{n+1}-1}{a-1}
$$

Growable Arrays exercise!

Arithmetic progressions: constant difference Most important to us: a difference of 1

- Arithmetic progressions:
- An example

Memorize this
 formula!

$\sum_{i=1}^{n} i=1+2+3+\ldots+n=\frac{n^{2}+n}{2}$
Exercise: $\sum_{i=1}^{40} i \begin{aligned} & \text { Also useful for today's } \\ & \text { Growable Arrays exercise! }\end{aligned}$

$$
i=21
$$

Visual proofs of the summation formula

$$
\sum_{i=1}^{n} i=1+2+3+\ldots+n=\frac{n^{2}+n}{2}
$$

- two visual representations

Application: Runtime of Selection Sort

1 for (int i = n-1; i > 0; i--) \{
2 int maxPos $=0$;
3 for (int j = 0; j <= i; j++) \{
4 if (a[j] > a[maxPos]) \{
5 maxPos = j;
6
\}
7 \}
8 swap a[maxPos] with a[i] ;
9 \}

Selection Sort

- Basic idea:
- Think of the array as having a sorted part (at the beginning) and an unsorted part (the rest)

$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$							
38	44	87	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$

- Find the smallest value in the unsorted part
- Move it to the end of the sorted part (making the sorted part bigger and the unsorted part smaller)

Application: Find exact and big-Oh runtime of Selection Sort

```
1 for (int i = n-1; i > 0; i--) {
2 int maxPos = 0;
3 for (int j = 0; j <= i; j++) {
4 if (a[j] > a[maxPos]) {
                                    maxPos = j;
    }
}
swap a[maxPos] with a[i] ;
9 }
```

- On what line is comparison performed?
- How many comparisons of array elements are executed? Exact? Big-Oh?
- How many times are array elements copied?

Growable Array Analysis

An exercise in doubling, done by pairs of students

Arrays are ubiquitous

- Basis for ArrayLists, sorting, and hash tables
- Why? O(1) access to any position, regardless of the size of the array.
- Limitation of ArrayLists:
- Fixed capacity!
- If it fills, you need to re-allocate memory and copy items
- How efficient is this?
- Consider two schemes: "add 1" and "double"

Work on Growable Array Exercise

- Work with a partner
- Hand in the document before you leave today if possible. Otherwise due start of day 2's class.
- Get help as needed from me and the assistants.

Handy for Growable Arrays HW

Properties of logarithms

$$
\begin{array}{cc}
\text { Properties of logarithms } & \text { Properties of exponents } \\
\qquad \begin{array}{cc}
\log _{b}(x y)=\log _{b}(x)+\log _{b}(y) & a^{(b+c)}=a^{b} a^{c} \\
\log _{b}(x / y)=\log _{b}(x)-\log _{b}(y) & \left.a^{b} / a^{c}=a^{b}\right)^{c} \\
\log _{b}\left(x^{\alpha}\right)=\alpha \log _{b}(x) & b=a^{\log _{a}(b)} \\
\log _{b}(x)=\frac{\log _{a}(x)}{\log _{a}(b)} & b^{c}=a^{c * \log _{a}(b)}
\end{array}
\end{array}
$$

