
Hash table basics

How can hash tables perform both contains() in O(1) time
and add() in amortized O(1) time, given enough space?

hashCode()“rose”à modà 3506511 à à 11 rose

…
10
11
12
…

Course - Delta
} None, everything good so far ++++
} Clearer directions on written assignments ++
} More individual programming ++
} Would like to choose teammates +
} Post solutions to quizzes +
} Get rid of quizzes, or collect them +
} More small coding questions on written

assignments +
} Lecture sometimes too fast +
} Sometimes lectures are slow/repetitive +
} Go over programming assignment solutions, how

to do it efficiently

Course - Plus
• Programming assignments help understanding +++++++++++++
• Quizzes help focus lectures ++++++++++++++
• Lectures are clear ++++++
• In-class coding, examples ++++++
• Written homework reinforces material +++++
• Good pace, difficulty of homework. Challenging but manageable ++++
• Everything is clear, smooth ++
• Piazza is helpful +

Self - Delta
} Start earlier / aim to finish early ++++
} Keep doing what I’m doing ++
} Study more for exams ++
} Ask timely questions about written homework ++
} More coding practice ++
} Read textbook more ++
} Reflect on knowledge, supplement ++
} Study more of written exam stuff ++
} Ask more questions when I don’t understand +
} Study more in general +
} Practice exams +
} Find more time +

Self - Plus
• Study/work hard, do all assignments & take them seriously +++++++++++
• Start early / aim to finish assignments early +++++++++
• On assignments, solve as much as possible on own ++++
• Reflecting on knowledge ++++
• Taking notes in class ++
• Pay attention in class ++
• Study for exams ++
• Thinking & planning abstractly before starting to code +
• Textbook +
• Reviewing past quizzes +
• Get help, ask questions +
• Help from peers +
• Practice exams +

Surprise
• More math / theory than expected ++++_
• Lot of work, had to recalibrate how much effort to devote +++
• More programming than expected +
• Takes a lot of time, especially outside of class +
• Group projects are emphasized +
• Didn’t know what to expect +
• Learning a lot +
• Very interesting / cool / fun +
• A lot of trees +
• I’m doing better than expected +
• Most of hard math was first couple weeks
• Lots of recursion
• Not as hard as expected (based on reputation)
• The fact that I really like it in spite of the workload
• Not high volume, but high difficulty

} Questions on HW6?
} Look at HW7

Efficiently putting 5 pounds of
data in a 20 pound bag

} Implementation choices:
◦ TreeSet (and TreeMap) uses a balanced tree: O(log n)
� Uses a red-black tree

◦ HashSet (and HashMap) uses a hash table: amortized
O(1) time

} Related: maps allow insertion, retrieval, and
deletion of items by key:

Since keys are unique, they form a set.
The values just go along for the ride.
We’ll focus on sets.

1. The underlying storage?
Growable array

2. Calculate the index to store an item from
the item itself. How?

Hashcode. Fast but un-ordered.

3. What if that location is already occupied
with another item?

Collision. Two methods to resolve

hashCode()“rose”à modà 3506511 à à 11 rose

…
10
11
12
…

} Array of size m
} n elements with unique keys
} If all keys are ≤ m, then use the key as

an array index.
◦ Clearly O(1) lookup of keys

Diagram from John Morris, University of Western Australia

} Issues?
◦ Keys must be unique.
◦ Often the range of potential keys is much larger

than the storage we want for an array
� Example: RHIT student IDs vs. # Rose students

1

2

hashCode()key à à integer

Objects that are .equals()
MUST have the same hashCode values
A good hashCode() also
is fast to calculate and
distributes the keys, like:

hashCode(“rose”)= 3506511
hashCode(“hulman”)= -1206158341 (can be negative if overflows)
hashCode(“institute”) = 36682261

} Example: if m = 100:

hashCode(“rose”) = 3506511

hashCode(“hulman”) = -1206158341

hashCode(“institute”) = 36682261

mod
m

à11

à07*

à61

* Note: since the hashCode is an integer, it might be negative…
• If it is negative, add Integer.MAX_VALUE + 1 to make it

positive before you mod. (Same as ANDing with
0x7fffffff, or removing sign bit from two’s complement)

• This mimics what’s actually done in practice: when m is a
power of 2, say 2k, we can just truncate, keeping the last
k bits (instead of taking mod m). Sign bit is lost.

} How Java’s hashCode() is used:

◦ Unless this position is already occupied

a “collision”

3-4

hashCode()“rose”à modà 3506511 à à 11 rose

…
10
11
12
…

} Default if you inherit Object’s: memory location
(platform-specific, actually)

} Many JDK classes override hashCode()
◦ Integer: the value itself
◦ Double: XOR first 32 bits with last 32 bits
◦ String: we’ll see shortly!
◦ Date, URL, ...

} Custom classes should override hashCode()
◦ Use a combination of final fields.
◦ If key is based on mutable field, then the hashcode will

change and you will lose it!
◦ People usually use strings if possible.

5

} Advantages?

} Disadvantages?

// This could be in the String class
public static int hash(String s) {
int total = 0;
for (int i=0; i<s.length(); i++)
total = total + s.charAt(i);

return total;
}

} Spreads out the values more, and anagrams not an issue.

} What about overflow during computation?
◦ What happens to first characters?

// This could be in the String class
public static int hash(String s) {
int total = 0;
for (int i=0; i<s.length(); i++)
total = total*256 + s.charAt(i);

return total;
}

} Spread out, anagrams OK, overflow OK.
} This is String’s hashCode() method.
} The (x = 31x + y) pattern is a good one to follow.

} See https://docs.oracle.com/javase/8/docs/api/java/lang/String.html#hashCode--

// This could be in the String class
public static int hash(String s) {
int total = 0;
for (int i=0; i<s.length(); i++)
total = total*31 + s.charAt(i);

return total;
}

6

https://docs.oracle.com/javase/8/docs/api/java/lang/String.html

} A good hashcode distributes keys evenly, but
collisions will still happen

} hashCode() are ints à only ~4 billion unique values.
◦ How many 16 character ASCII strings are possible?

} If n is small, tables should be much smaller
◦ mod will cause collisions too!

} Solutions:
◦ Chaining
◦ Probing (Linear, Quadratic)

7

hashCode()“rose”à modà 3506511 à à 11 rose

…
10
11
12
…

Java’s HashMap uses chaining and a table
size that is a power of 2.

8

Grow in another direction
Examples: .get(“at”), .get(“him),
(hashcode=18), .add(“him”), .delete(“with”)

9-10

m array slots,
n items.
Load factor, l=n/m.

Runtime = O(l)

Space-time trade-off
1. If m constant, then this is O(n). Why?

2. If keep m~0.5n (by doubling), then this is amortized O(1). Why?

} No need to grow in second direction

} No memory required for pointers
◦ Historically, this was important!
◦ Still is for some data…

} Will still need to keep load factor (l=n/m) low
or else collisions degrade performance
◦ We’ll grow the array again

} Probe H (see if it causes a collision)
} Collision? Also probe the next available space:
◦ Try H, H+1, H+2, H+3, …
◦ Wraparound at the end of the array

} Example on board: .add() and .get()

} Problem: Clustering

} Animation:
◦ http://www.cs.auckland.ac.nz/software/AlgAnim/hash_ta

bles.html
◦ Applet deprecated on most browsers.
◦ See next slide for a few freeze-frames.

11

http://www.cs.auckland.ac.nz/software/AlgAnim/hash_tables.html

} For probing to work, 0 £ l £ 1.

} For a given l, what is the expected number
of probes before an empty location is found?

} Assume all locations are equally likely to be
occupied, and equally likely to be the next
one we look at.

} l is the probability that a given cell is full, 1-
l the probability a given cell is empty.

} What’s the expected number?

12

From https://en.wikipedia.org/wiki/List_of_mathematical_series:

} Clustering!
◦ Blocks of occupied cells are formed
◦ Any collision in a block makes the block bigger

} Two sources of collisions:
◦ Identical hash values
◦ Hash values that hit a cluster

} Actual average number of probes for large l:

For a proof, see Knuth, The Art of Computer Programming, Vol 3:
Searching Sorting, 2nd ed, Addision-Wesley, Reading, MA, 1998.
(1st edition = 1968)

13

} Easy to implement
} Works well when load factor is low
◦ In practice, once l > 0.5, we usually double the size

of the array and rehash
◦ This is more efficient than letting the load factor

get high
} Works well with caching

} Reminder: Linear probing:
◦ Collision at H? Try H, H+1, H+2, H+3,...

} New: Quadratic probing:
◦ Collision at H? Try H, H+12. H+22, H+32, ...
◦ Eliminates primary clustering. “Secondary

clustering” isn’t as problematic

} Choose a prime number for the array size, m
} Then if λ ≤ 0.5:
◦ Guaranteed insertion
� If there is a “hole”, we’ll find it
◦ So no cell is probed twice

} Can show with m=17, H=6.

14

For a proof, see Theorem 20.4:
Suppose the table size is prime, and that we repeat a probe
before trying more than half the slots in the table
See that this leads to a contradiction

Use an algebraic trick to calculate next index
◦ Difference between successive probes yields:

� Probe i location, Hi = (Hi-1 + 2i – 1) % M

1. Just use bit shift to multiply i by 2
� probeLoc= probeLoc + (i << 1) - 1;
…faster than multiplication

2. Since i is at most M/2, can just check:
� if (probeLoc >= M)

probeLoc -= M;
…faster than mod

When growing array, can’t double!
◦ Can use, e.g., BigInteger.nextProbablePrime()

} No one has been able to analyze it!
} Experimental data shows that it works well
◦ Provided that the array size is prime, and l < 0.5

15-17

} Finish the quiz.
} Then check your answers with the next slide

Structure insert Find value Find max value
Unsorted array
Sorted array
Balanced BST
Hash table

Structure insert Find value Find max value
Unsorted array Amortized q(1) q(n) q(n)
Sorted array q(n) q(log n) q(1)
Balanced BST q(log n) q(log n) q(log n)
Hash table Amortized q(1) q(1) q(n)

} Constants matter!

} 727MB data, ~190M elements
◦ Many inserts, followed by many finds
◦ Microsoft's C++ STL

} Why?
} Sorted arrays are nice if they don’t have to be

updated frequently!
} Trees still nice when interleaved insert/find

Structure build (seconds) Size (MB) 100k finds (seconds)
Hash map 22 6,150 24
Tree map 114 3,500 127
Sorted array 17 727 25

} Why use 31 and not 256 as a base in the
String hash function?

} Consider chaining, linear probing, and
quadratic probing.
◦ What is the purpose of all of these?
◦ For which can the load factor go over 1?
◦ For which should the table size be prime to avoid

probing the same cell twice?
◦ For which is the table size a power of 2?
◦ For which is clustering a major problem?
◦ For which must we grow the array and rehash every

element when the load factor is high?

…is a great time to start StringHashSet while
it’s fresh

…is acceptable to use for EditorTrees Milestone
2 group worktime, especially if you have
questions for me

