CSSE 230
 Hash table basics

How can hash tables perform both contains() in $\mathrm{O}(1)$ time and add() in amortized $\mathrm{O}(1)$ time, given enough space?

Midterm feedback

Course - Plus

- Programming assignments help understanding +++++++++++++
- Quizzes help focus lectures ++++++++++++++
- Lectures are clear ++++++
- In-class coding, examples ++++++
- Written homework reinforces material +++++
- Good pace, difficulty of homework. Challenging but manageable ++++
- Everything is clear, smooth ++
- Piazza is helpful +

Course - Delta

- None, everything good so far ++++
- Clearer directions on written assignments ++
- More individual programming ++
- Would like to choose teammates +
- Post solutions to quizzes +
- Get rid of quizzes, or collect them +
- More small coding questions on written assignments +
- Lecture sometimes too fast +
- Sometimes lectures are slow/repetitive +
- Go over programming assignment solutions, how to do it efficiently

Self - Plus

- Study/work hard, do all assignments \& take them seriously +++++++++++
- Start early / aim to finish assignments early +++++++++
- On assignments, solve as much as possible on own ++++
- Reflecting on knowledge ++++
- Taking notes in class ++
- Pay attention in class ++
- Study for exams ++
- Thinking \& planning abstractly before starting to code +
. Textbook +
- Reviewing past quizzes +
- Get help, ask questions +
- Help from peers +
- Practice exams +

Self - Delta

- Start earlier / aim to finish early ++++
- Keep doing what I'm doing ++
- Study more for exams ++
- Ask timely questions about written homework ++
- More coding practice ++
- Read textbook more ++
- Reflect on knowledge, supplement ++
- Study more of written exam stuff ++
- Ask more questions when I don't understand +
- Study more in general +
- Practice exams +
- Find more time +

Surprise

. More math / theory than expected ++++_

- Lot of work, had to recalibrate how much effort to devote +++
- More programming than expected +
- Takes a lot of time, especially outside of class +
- Group projects are emphasized +
- Didn't know what to expect +
- Learning a lot +
- Very interesting / cool / fun +
- A lot of trees +
- I'm doing better than expected +
- Most of hard math was first couple weeks
- Lots of recursion
- Not as hard as expected (based on reputation)
- The fact that I really like it in spite of the workload
- Not high volume, but high difficulty

Announcements and questions

Questions on HW6?
Look at HW7

Hashing

Efficiently putting 5 pounds of data in a 20 pound bag

Reminder: sets hold unique items

- Implementation choices:
- TreeSet (and TreeMap) uses a balanced tree: O(log n)
- Uses a red-black tree
- HashSet (and HashMap) uses a hash table: amortized O(1) time
- Related: maps allow insertion, retrieval, and deletion of items by key.

Since keys are unique, they form a set.
The values just go along for the ride.
We'll focus on sets.

Big ideas of hash tables

The underlying storage?
Growable array
2. Calculate the index to store an item from the item itself. How?

Hashcode. Fast but un-ordered.
3. What if that location is already occupied with another item?

Collision. Two methods to resolve

Direct Address Tables

direct access table

- Array of size m
- n elements with unique keys
- If all keys are $\leq m$, then use the key as an array index.
- Clearly O(1) lookup of keys
- Issues?
- Keys must be unique.
- Often the range of potential keys is much larger than the storage we want for an array
- Example: RHIT student IDs vs. \# Rose students

We attempt to create unique keys by applying a .hashCode() function ...

key \rightarrow hashCode(\rightarrow integer

Objects that are .equals()
MUST have the same hashCode values
A good hashCode() also
is fast to calculate and
distributes the keys, like:
hashCode("rose")= 3506511
hashCode("hulman")= -1206158341 (can be negative if overflows) hashCode("institute") = 36682261

...and then take it mod the table size (m) to get an index into the array.

- Example: if $m=100$:
hashCode("rose") = 3506511
hashCode("hulman") =-1206158341
hashCode("institute") = 36682261

* Note: since the hashCode is an integer, it might be negative...
- If it is negative, add Integer.MAX_VALUE + 1 to make it positive before you mod. (Same as ANDing with $0 x 7 \mathrm{fffffff}$, or removing sign bit from two's complement)
- This mimics what's actually done in practice: when m is a power of 2 , say 2^{k}, we can just truncate, keeping the last k bits (instead of taking mod m). Sign bit is lost.

Index calculated from the object itself, not from 3-4 a comparison with other objects

- How Java's hashCode() is used:

- Unless this position is already occupied a "collision"

Some hashCode() implementations

- Default if you inherit Object's: memory location (platform-specific, actually)
- Many JDK classes override hashCode()
- Integer: the value itself
- Double: XOR first 32 bits with last 32 bits
- String: we'll see shortly!
- Date, URL, ...
- Custom classes should override hashCode() - Use a combination of final fields.
- If key is based on mutable field, then the hashcode will change and you will lose it!
- People usually use strings if possible.

A simple hash function for Strings is a function of every character
// This could be in the String class public static int hash(String s) \{ int total = 0;
for (int i=0; i<s.length(); i++)
total $=$ total + s.charAt(i);
return total;
\}

- Advantages?
- Disadvantages?

A better hash function for Strings uses place value
// This could be in the String class public static int hash(String s) \{ int total = 0;
for (int i=0; i<s.length(); i++) total $=$ total*256 + s.charAt(i); return total; \}

- Spreads out the values more, and anagrams not an issue.
- What about overflow during computation?
- What happens to first characters?

A better hash function for Strings uses place value with a base that's prime
// This could be in the String class public static int hash(String s) \{ int total $=0$;
for (int i=0; i<s.length(); i++) total $=$ total*31 + s.charAt(i); return total; \}

- Spread out, anagrams OK, overflow OK.
- This is String's hashCode () method.
- The $(x=31 x+y)$ pattern is a good one to follow.

[^0]
Collisions are inevitable

 collisions will still happen

- hashCode() are ints \rightarrow only ~ 4 billion unique values. - How many 16 character ASCII strings are possible?
- If n is small, tables should be much smaller - mod will cause collisions too!
- Solutions:
- Chaining
- Probing (Linear, Quadratic)

Separate chaining: an array of linked lists

Grow in another direction

```
Examples: .get("at"), .get("him),
(hashcode=18), .add("him"), .delete("with")
```


Java's HashMap uses chaining and a table size that is a power of 2 .

Runtime of hashing with chaining depends on the load factor

m array slots,
 n items.
Load factor, $\lambda=n / m$.
Runtime $=O(\lambda)$

Space-time trade-off

1. If m constant, then this is $O(n)$. Why?
2. If keep $m \sim 0.5 n$ (by doubling), then this is amortized $O(1)$. Why?

Alternative: Store collisions in other array slots.

- No need to grow in second direction
- No memory required for pointers
- Historically, this was important!
- Still is for some data...
- Will still need to keep load factor ($\lambda=\mathrm{n} / \mathrm{m}$) low or else collisions degrade performance
- We'll grow the array again

Collision Resolution: Linear Probing

- Probe H (see if it causes a collision)
- Collision? Also probe the next available space:
- Try H, H+1, H+2, H+3, ...
- Wraparound at the end of the array
- Example on board: .add() and .get()
, Problem: Clustering
- Animation:
- http://www.cs.auckland.ac.nz/software/AlgAnim/hash_ta bles.html
- Applet deprecated on most browsers.
- See next slide for a few freeze-frames.

Clustering Example

Collision Stats

number of collisions during insertions

Linear probing efficiency also depends on load factor, $\lambda=n / m$

- For probing to work, $0 \leq \lambda \leq 1$.
- For a given λ, what is the expected number of probes before an empty location is found?

Rough Analysis of Linear Probing

- Assume all locations are equally likely to be occupied, and equally likely to be the next one we look at.
- λ is the probability that a given cell is full, $1-$ λ the probability a given cell is empty.
- What's the expected number?

$$
\sum_{p=1}^{\infty} \lambda^{p-1}(1-\lambda) p=\frac{1}{1-\lambda}
$$

From https://en.wikipedia.org/wiki/List_of_mathematical_series:

$$
\sum_{k=1}^{n} k z^{k}=z \frac{1-(n+1) z^{n}+n z^{n+1}}{(1-z)^{2}}
$$

Better Analysis of Linear Probing

- Clustering!
- Blocks of occupied cells are formed
- Any collision in a block makes the block bigger
- Two sources of collisions:
- Identical hash values
- Hash values that hit a cluster
- Actual average number of probes for large λ :

$$
\frac{1}{2}\left(1+\frac{1}{(1-\lambda)^{2}}\right)
$$

```
For a proof, see Knuth, The Art of Computer Programming, Vol 3:
Searching Sorting, 2nd ed, Addision-Wesley, Reading, MA, }1998
(1 lst edition = 1968)
```


Why consider linear probing?

- Easy to implement
- Works well when load factor is low
- In practice, once $\lambda>0.5$, we usually double the size of the array and rehash
- This is more efficient than letting the load factor get high
- Works well with caching

To reduce clustering, probe farther apart

- Reminder: Linear probing:
- Collision at H? Try H, H+1, H+2, H+3,...
- New: Quadratic probing:
- Collision at H ? Try $\mathrm{H}, \mathrm{H}+1^{2} . \mathrm{H}+2^{2}, \mathrm{H}+3^{2}, \ldots$
- Eliminates primary clustering. "Secondary clustering" isn't as problematic

Quadratic Probing works best with low λ and

- Choose a prime number for the array size, m
- Then if $\lambda \leq 0.5$:
- Guaranteed insertion
- If there is a "hole", we'll find it
- So no cell is probed twice
- Can show with $\mathrm{m}=17, \mathrm{H}=6$.

```
For a proof, see Theorem 20.4:
    Suppose the table size is prime, and that we repeat a probe
    before trying more than half the slots in the table
    See that this leads to a contradiction
```

Quadratic Probing runs quickly if we implement it correctly

Use an algebraic trick to calculate next index

- Difference between successive probes yields:
- Probe i location, $\mathrm{H}_{\mathrm{i}}=\left(\mathrm{H}_{\mathrm{i}-1}+2 \mathrm{i}-1\right) \% \mathrm{M}$

1. Just use bit shift to multiply i by 2

- probeLoc= probeLoc $+(i \ll 1)-1$;
...faster than multiplication

2. Since i is at most $M / 2$, can just check:

- if (probeLoc $>=M$)
probeLoc -= M;
...faster than mod
When growing array, can't double!
- Can use, e.g., BigInteger.nextProbablePrime()

Quadratic probing analysis

- No one has been able to analyze it!
- Experimental data shows that it works well
- Provided that the array size is prime, and $\lambda<0.5$

Summary:

Hash tables are fast for some operations

Structure	insert	Find value	Find max value
Unsorted array			
Sorted array			
Balanced BST			
Hash table			

- Finish the quiz.
- Then check your answers with the next slide

Answers:

Structure	insert	Find value	Find max value
Unsorted array	Amortized $\theta(1)$	$\theta(n)$	$\theta(n)$
Sorted array	$\theta(n)$	$\theta(\log n)$	$\theta(1)$
Balanced nST	$\theta(\log \mathrm{n})$	$\theta(\log \mathrm{n})$	$\theta(\log \mathrm{n})$
Hash table	Amortized $\theta(1)$	$\theta(1)$	$\theta(\mathrm{n})$

In practice

- Constants matter!
- 727MB data, ~190M elements
- Many inserts, followed by many finds
- Microsoft's C++ STL

Structure	build (seconds)	Size (MB)	100k finds (seconds)
Hash map	22	6,150	24
Tree map	114	3,500	127
Sorted array	17	727	25

- Why?
- Sorted arrays are nice if they don't have to be updated frequently!
- Trees still nice when interleaved insert/find

Review: discuss with a partner

- Why use 31 and not 256 as a base in the String hash function?
Consider chaining, linear probing, and quadratic probing.
- What is the purpose of all of these?
- For which can the load factor go over 1?
- For which should the table size be prime to avoid probing the same cell twice?
- For which is the table size a power of 2?
- For which is clustering a major problem?
- For which must we grow the array and rehash every element when the load factor is high?

Today's worktime

...is a great time to start StringHashSet while it's fresh
...is acceptable to use for EditorTrees Milestone
2 group worktime, especially if you have questions for me

[^0]: - See https://docs.oracle.com/javase/8/docs/api/java/lang/String.htm|\#hashCode--

