Q0-2

Proof by Contradiction. Suppose there is such a MaxCSS, namely $S_{p . q}$, where $\mathrm{i}+1 \leq \mathrm{p} \leq \mathrm{j}$.

Case 1. $q>j$
a

Case 2. $\boldsymbol{q} \leq j$

```
p MaxCSS a
```


CSSE 230 Day 4

Maximum Contiguous Subsequence Sum

After today's class you will be able to:
provide an example where an insightful algorithm can be much more efficient than a naive one.

Announcements

- Sit with your StacksAndQueues partner now
- Why Math?

Homework 2

- Is it true that $\log _{a}(n)$ is $\theta\left(\log _{b}(n)\right)$?
- Complete homework 2 to find out the exciting conclusion!
- Here is the graph for $a=2$ and $b=10$:
- Is it true that 3^{n} is $\theta\left(2^{n}\right)$?
- Rest of HW2

Andrew Hettlinger $>$ Matt Boutell

November 6 at 12:30pm - 㚙
In your class, I never thought I'd actually use big O notation, but now I find myself using it in my complaints to coworkers about how a previous developer would sort a list before doing a binary search to find a single element $\mathrm{O}($ nlogn $)+\mathrm{O}(\operatorname{logn})$ instead of just doing a linear search $\mathrm{O}(\mathrm{n})$. I feel really nerdy now (as if I didn't before :))

Like - Comment

So why would we ever sort first to do binary search?

Recap: MCSS

Problem definition: Given a non-empty sequence of n (possibly negative) integers $A_{1}, A_{2}, \ldots, A_{n}$, find the maximum consecutive subsequence $S_{i, j}=\sum_{k=i}^{j} A_{k}$, and the corresponding values of i and j.

Reminder: we use 0 -based indexing.

Recap: Eliminate the most obvious inefficiency, get $\Theta\left(\mathrm{N}^{2}\right)$

```
for( int i = 0; i < a.length; i++ ) {
    int thisSum = 0;
    for( int j = i; j < a.length; j++ ) {
        thisSum += a[ j ];
            if(thisSum > maxSum) {
            maxSum = thisSum;
            segStart = i;
            seqEnd = j;
        }
    }
}
```

- Exhaustive search: find every $\mathrm{S}_{\mathrm{i}, \mathrm{j}}$

MCSS is $\mathrm{O}\left(\mathrm{n}^{2}\right)$

- Is MCSS $\theta\left(\mathrm{n}^{2}\right)$?
- Showing that a problem is $\Omega(\mathrm{g}(\mathrm{n}))$ is much tougher. How do you prove that it is impossible to solve a problem more quickly than you already can?
- Can we find a yet faster algorithm?
- If so, it can't use exhaustive search. (Why?)

$$
\begin{aligned}
& \mathrm{f}(\mathrm{n}) \text { is } \mathrm{O}(\mathrm{~g}(\mathrm{n})) \text { if } \mathrm{f}(\mathrm{n}) \leq \mathrm{cg}(\mathrm{n}) \text { for all } \mathrm{n} \geq \mathrm{n}_{0} \\
& \text { So } O \text { gives an upper bound } \\
& \mathrm{f}(\mathrm{n}) \text { is } \Omega\left(\mathrm{g}(\mathrm{n}) \text {) if } \mathrm{f}(\mathrm{n}) \geq \mathrm{cg}(\mathrm{n}) \text { for all } \mathrm{n} \geq \mathrm{n}_{0}\right. \\
& \text { So } \Omega \text { gives a lower bound } \\
& \mathrm{f}(\mathrm{n}) \text { is } \theta(\mathrm{g}(\mathrm{n})) \text { if } \mathrm{c}_{1} \mathrm{~g}(\mathrm{n}) \leq \mathrm{f}(\mathrm{n}) \leq \mathrm{c}_{2} \mathrm{~g}(\mathrm{n}) \text { for all } \mathrm{n} \geq \mathrm{n}_{0} \\
& \text { So } \theta \text { gives a tight bound } \\
& \text { of } \mathrm{f}(\mathrm{n}) \text { is } \theta(\mathrm{g}(\mathrm{n}) \text {) if it is both } \mathrm{O}(\mathrm{~g}(\mathrm{n}) \text {) and } \Omega(\mathrm{g}(\mathrm{n}))
\end{aligned}
$$

Observations?

- Consider $\{1,4,-2,3,-8,4,-6,5,-2\}$
- Any subsequences you can safely ignore?
- Discuss with another student (2 minutes)

Observation 1

- We noted that a max-sum sequence $S_{i, j}$ cannot begin with a negative number.
- Generalizing this, it cannot begin with a prefix $A_{i, k}$ with $k<j$ whose sum is negative.
- Proof by contradiction. Suppose that $\mathrm{S}_{\mathrm{i}, \mathrm{j}}$ is a maxsum sequence and that $\mathrm{S}_{\mathrm{i}, \mathrm{k}}$ is negative. In that case, a larger-sum contiguous sequence can be created by removing $\mathrm{S}_{\mathrm{i}, \mathrm{k}}$. However, this violates our assumption that $\mathrm{S}_{\mathrm{i}, \mathrm{j}}$ is a max-sum contiguous sequence.

Observation 2

- All contiguous subsequences that border the maximum contiguous subsequence must have negative or zero sums.
- Proof by contradiction. Consider a contiguous subsequence that borders an MCSS sequence. Suppose it has a positive sum. We can then create a larger max-sum sequence by combining both sequences. This contradicts our assumption of having found a max-sum sequence.

Observation 3

- Imagine we are growing subsequences from a fixed left index i. That is, we compute the sums $\mathrm{S}_{\mathrm{i}, \mathrm{j}}$ for increasing j.
- Claim: If there is such an $\mathrm{S}_{\mathrm{i}, \mathrm{j}}$ that "just became negative" (for the first time, with the inclusion of the $f^{\text {th }}$ term), any subsequence starting in between $i+1$ and j cannot be a MaxCSS (unless its sum equals an already-found MaxCSS)!
- In other words, as soon as we find that $\mathrm{S}_{\mathrm{i}, \mathrm{j}}$ is negative, we can skip all sums that begin with any of A_{i+1}, \ldots, A_{j}.
- We can "skip i ahead" to be $j+1$.

Proof of Observation 3

- Proof by Contradiction. Suppose there is such a MaxCSS, namely $\mathrm{S}_{\mathrm{p}, \mathrm{q}}$, where $\mathrm{i}+1 \leq \mathrm{p} \leq \mathrm{j}$.

$$
\boldsymbol{i} \quad S_{i, j} \text { just became negative! } \quad j
$$

- Key point. What must be true of the following sums?

Case 1. $q>j$
p
MaxCSS
9
Starts with a negative prefix. Violates Obs. 1!
Case 2. $q \leq j$
p MaxCSS
q
Borders a subsequence with nonnegative sum. Violates Obs. 2, or there is a previous MaxCSS with the same sum.

New, improved code!

```
public static Result mcssLinear(int[] seq)
```

 Result result = new Result();
 result.sum = 0;
 int thisSum \(=0\);
 int i \(=0\);
 for (int j \(=0 ; j<\) seq.length; j++) \{
 thisSum += seq[j];
 if (thisSum > result.sum) \{
 result.sum \(=\) thisSum;
 result.startIndex = i;
 result.endIndex = j;
 \} else if (thisSum < 0) \{
 // advances start to where end
 // will be on NEXT iteration
 $\mathrm{S}_{\mathrm{i}, \mathrm{j}}$ is negative. So, skip ahead per Observation 3
i = j + 1;
thisSum $=0$;
\}
\}
return result;

```
Running time is O (?)
How do we know?
```


What have we shown?

- MCSS is $O(n)$!
- Is MCSS $\Omega(\mathrm{n})$ and thus $\theta(\mathrm{n})$?
- Yes, intuitively: we must at least examine all n elements

Time Trials!

- From SVN, checkout MCSSRaces
- Study code in MCSS.main()
- For each algorithm, how large a sequence can you process on your machine in less than 1 second?

MCSS Conclusions

- The first algorithm we think of may be a lot worse than the best one for a problem
- Sometimes we need clever ideas to improve it
- Showing that the faster code is correct can require some serious thinking
- Programming is more about careful consideration than fast typing!

Interlude

- If GM had kept up with technology like the computer industry has, we would all be driving $\$ 25$ cars that got 1000 miles to the gallon.
- Bill Gates
- If the automobile had followed the same development cycle as the computer, a RollsRoyce would today cost \$100, get a million miles per gallon, and explode once a year, killing everyone inside.
- Robert X. Cringely

Interlude

Stacks and Queues

A preview of Abstract Data Types and Java Collections

This week's major program

Stacks and Queues assignment

Intro: Ideas for how to implement stacks and queues using arrays and linked lists

How to write your own growable circular queue:

1. Grow it as needed (like day exercise)
2. Wrap-around the array indices for more efficient dequeuing

Stacks and Queues implementation

Analyze implementation choices for Queues - much more interesting than stacks! (See HW)

Application: An exercise in writing cool algorithms that evaluate mathematical expressions:

Evaluate Postfix: 678 * +
(62. How?)

Convert Infix to Postfix: $6+7$ * 8
(678 * + You'll figure out how)
Both using stacks.
Read assignment for hints on how.

Meet your partner

- Plan when you'll be working. We suggest that your first meeting should be today or tomorrow
- Review the pair programming video as needed
- Check out the code and read the specification together

