QO0-2

v Proof by Contradiction. Suppose there is such a MaxCSS, namely S, .,

where i+l <p <)
i S, Just became negative! j
Case l.g>J p MaxCsS q
Case 2. 9=/ p MaxCSS q

CSSE 230 Day 4

Maximum Contiguous Subsequence Sum

After today’s class you will be able to:

provide an example where an insightful algorithm can be much
more efficient than a naive one.

Ahnouncements

» Sit with your StacksAndQueues partner now

» Why Math?

Homework 2

Is it true that log,(n) is 6(log,(n))?

Complete homework 2 to find out the exciting
conclusion!

» Here is the graph for a=2 and b=10:

v Vv

B S S S

_—
e

» Is it true that 3" is 6(2")?

» Rest of HW?2

p—

Andrew Hettlinger » Matt Boutell
November 6 at 12:30pm - 2

In your class, | never thought I'd actually use big O notation, but now | find
myself using it in my complaints to coworkers about how a previous
developer would sort a list before doing a binary search to find a single
element O(nlogn) + O(logn) instead of just doing a linear search O(n). |
feel really nerdy now (as if I didn't before @))

Like - Comment

So why would we ever sort first to do binary search?

Recap: MCSS

Problem definition: Given a non-empty
sequence of n (possibly negative) integers
Ay, Ao, ..., A, find the maximum consecutive
subsequence S; ; = Z{:I. Ay, and the
corresponding values of i and j.

Reminder: we use 0-based indexing.

.) Q3
Recap: Eliminate the most obvious

inefficiency, get O(N?)

for{ int 1 = 0; 1 < a.length; i++) {
int thisSum = 0;
for{ int j =1i; j < a.length; j++) {
thisSum += a[j]:;

i1f(thisSum > maxSum) {
maxSum = thisSum;
seqStart = 1i;
seqEnd = J:

}
}

» Exhaustive search: find every Si j

MCSS is O(n?)

» Is MCSS 6(n?)?

> Showing that a problem is Q (g(n)) is much tougher. How do
you prove that it is impossible to solve a problem more
quickly than you already can?

- Can we find a yet faster algorithm?
- If so, it can’t use exhaustive search. (Why?)

f(n) is O(g(n)) if f(n) < cg(n) for all n = n,

> So O gives an upper bound

f(n) is Q(g(n)) if f(n) = cg(n) for all n = n,

> So Q gives a lower bound

f(n) is 6(g(n)) if c,;g(n) < f(n) < c,g(n) for all n = n,
> So 0 gives a tight bound

> f(n) is 6(g(n)) if it is both O(g(n)) and Q(g(n))

Observations?

» Consider {1, 4, -2, 3, -8, 4, -6, 5, -2}

» Any subsequences you can safely ignore?
> Discuss with another student (2 minutes)

Q4

Q5
Observation 1

» We noted that a max-sum sequence §;
cannot begin with a negative number. '

» Generalizing this, it cannot begin with a
prefix A; , with k<j whose sum is negative.

- Proof by contradiction. Suppose that§;;is a max-
sum sequence and that S; is negative. In that case,
a larger-sum contiguous sequence canh be created
by removing S; .. However, this violates our
assumption that S;j IS @ max-sum contiguous
sequence.

Observation 2

» All contiguous subsequences that border the
maximum contiguous subsequence must
have negative or zero sums.

- Proof by contradiction. Consider a contiguous
subsequence that borders an MCSS sequence.
Suppose it has a positive sum. We can then create a
larger max-sum sequence by combining both
sequences. This contradicts our assumption of
having found a max-sum sequence.

Q6

Observation 3

» Imagine we are growing subsequences from a fixed left
index /. That is, we compute the sums §; ; for increasing

/-

» Claim: If there is such an S, ¥ that “just became negative”
(for the first time, with the inclusion of the fh term), any
subsequence starting in between 7/ + 1 and jcannot be a

MaxCSS (unless its sum equals an already-found
MaxCSS)!

» In other words, as soon as we find that S, is negative,

we can skip all sums that begin with any of Aiiqs - A

» We can “skip /ahead” to be j+ 1.

Q7

HIT JUUDIYLITIATULISL Lidoo UUTO 11IUL TIavVe A ITIHTITUVE TTITUHIVUU, SU Ldadlllllyg NHoLITITIUVE]) 1o 1HUL PUSSIVIT WILHTUUL 1TTIOUUTl ylTHy IS LOUT 1UT UIC DUUDIYLITIACULISL LIdoso, W

Proof of Observation 3

» Proof by Contradiction. Suppose there is such a MaxCSS, namely S, 4,
where i+1 <p <j.

i Sij just became negative! j

» Key point. What must be true of the following sums?

Sip-1 =0 Spj <0

Casel.g>/ p MaxCSS q

Starts with a negative prefix. Violates Obs. 1!

Case2.g</y p MaxCSS q

Borders a subsequence with nonnegative sum.
Violates Obs. 2, or there is a previous MaxCSS with the
same sum.

New, improved code! Qs

public static Result mcssLinear (int[] seq) {
Result result = new Result();
result.sum = 0;
int thisSum = 0;

int 1 = 0;
for (int j = 0; j < seq.length; j++) {
thisSum += seql[j];

if (thisSum > result.sum) {
result.sum = thisSum;
result.startIndex = i; - -
result.endindex = §; /= 5j Is negative. 5o,
} else if (thisSum < 0) { Sk|p ahead per
// advances start to where end Observation 3
// will be on NEXT iteration
i=3+ 1;
thisSum = 0;

}
} Running time is O (?)

return result; HOW dO we know?

What have we shown?

» MCSS is O(n)!
» Is MCSS Q(n) and thus 6(n)?

> Yes, intuitively: we must at least examine all n elements

Time Trials!

» From SVN, checkout MCSSRaces
» Study code in MCSS.main()

» For each algorithm, how large a sequence can
you process on your machine in less than 1
second?

MCSS Conclusions

» The first algorithm we think of may be a lot
worse than the best one for a problem

» Sometimes we need clever ideas to improve it

» Showing that the faster code is correct can
require some serious thinking

» Programming is more about careful
consideration than fast typing!

Interlude

» If GM had kept up with technology like the
computer industry has, we would all be driving
$25 cars that got 1000 miles to the gallon.

- Bill Gates

» If the automobile had followed the same
development cycle as the computer, a Rolls-
Royce would today cost $100, get a million miles
per gallon, and explode once a year, killing
everyone inside.

- Robert X. Cringely

Interlude

™

3
~
3
.
5\
~
2

This week’s major program

Q10
Stacks and Queues assignment

Intro: Ideas for how to implement stacks and
gueues using arrays and linked lists

How to write your own growable circular
queue:

1. Grow it as needed (like day 1exercise)

2. Wrap-around the array indices for more
efficient dequeuing

Q11
Stacks and Queues implementation

Analyze implementation choices for Queues - much
more interesting than stacks! (See HW)

Application: An exercise in writing cool
algorithms that evaluate mathematical expressions:

Evaluate Postfix: 6 7 8 * +
(62. How?)

Convert Infix to Postfix: 6 + 7 * 8
(678 *+ You'll figure out how)

Both using stacks.
Read assignment for hints on Aow.

Meet your partner

» Plan when you'll be working. We suggest that
your first meeting should be today or
tomorrow

» Review the pair programming video as
needed

» Check out the code and read the specification
together

