
Growable Arrays Continued
Big-Oh notation

Submit Growable Array exercise



} Growable Array recap
} Big-Oh definition

} After today, you’ll be able to 
◦ Use the term amortized appropriately in analysis
◦ State the formal definition of big-Oh notation



} You will not usually need the textbook in 
class

} All should do piazza introduction post (a 
few students left)

} Turn in GrowableArrays now.

} Quiz problems 1–5. Do on your own, then 
compare with a neighbor.

Q1-5



} See syllabus for exam weighting and caveats. 

} Note evening exams

} Think of every program you write as a 
practice test
◦ Especially HW4 and test 2a



x



Simplify: Note that log n (without a specified) base means log2n.

Also, log n is an abbreviation for log(n).

1. log (2 n log n)

2. log(n/2)

3. log (sqrt (n))

4. log (log (sqrt(n)))

5. log4 n

6. 22 log n

7. if n=23k - 1, solve for k.

Where do logs come from in algorithm analysis?



Simplify: Note that log n (without a specified) base means log2n.

Also, log n is an abbreviation for log(n).

1. 1+log n + log log n

2. log n - 1

3. ½ log n

4. -1 + log log n

5. (log n) / 2

6. n2

7. n+1=23k

log(n+1)=3k
k= log(n+1)/3

A: Any time we cut things in half at each step 
(like binary search or mergesort)



◦ Short but intense! ~50 lines of code total in our 
solutions

◦ Be sure to read the description of how it will be 
graded. Note how style will be graded.

◦ Demo: Running the JUnit tests for test, file, 
package, and project



} About Homework 1?
◦ Aim to complete tonight, since it is due after next 

class
◦ It is substantial
◦ The last problem (the table) is worth lots of points!

} About the Syllabus?

Q2-3



How many times does sum++ run?

for (i = 4; i < n; i++)
for (j = 0; j <= n; j++)

sum++;

Why is this one so easy? (does the inner loop depend 
on outer loop?)
What if inner were (j = 0; j <= i ; j++) ?



How many times does sum++ run?

for (i = 1; i <= n; i *= 2)
sum++;

Be precise, using floor/ceiling as needed, to get full 
credit.



Daring to double



200



} Doubling each time:
◦ Assume that N = 5 (2k) + 1.

} Total # of array elements copied:

k N #copies

0 6 5

1 11 5 + 10 = 15

2 21 5 + 10 + 20 = 35

3 41 5 + 10 + 20 + 40 = 75

4 81 5 + 10 + 20 + 40 + 80 = 155

k = 5 (2k) + 1 5(1 + 2 + 4 + 8 + … + 2k)

Express as a closed-form expression in 
terms of K, then express in terms of N



} Assume that N = 5 (2k) + 1.
} Total # of array elements copied 

= 5(1 + 2 + 4 + 8 + … + 2k)
} Do in terms of k, then in terms of N 



} Total # of array elements copied:

N #copies

6 5 

7 5 + 6

8 5 + 6 + 7 

9 5 + 6 + 7 + 8 

10 5 + 6 + 7 + 8 + 9

N ???

Express as a closed-form 
expression in terms of N



} What’s the amortized cost of adding an 
additional string…
◦ in the doubling case?
◦ in the add-one case?

Amortized cost means the “average per-operation cost” while 
adding to a single GrowableArray many times.

} So which should we use?

• Q6-7





} Algorithms may have different time 
complexity on different data sets

} What do we mean by "Worst Case"?
} What do we mean by "Average Case"?
} What are some application domains where 

knowing the Worst Case time complexity 
would be important?

} http://cacm.acm.org/magazines/2013/2/160173-the-tail-
at-scale/fulltext

http://cacm.acm.org/magazines/2013/2/160173-the-tail-at-scale/fulltext




Worst-case:
O(n)

amortized:
O(1)



Big-Oh



} We only care what happens when N gets large

} Is the function linear?  quadratic? 
exponential?



Figure 5.1
Running times for small inputs

Data Structures & Problem Solving using JAVA/2E Mark Allen Weiss      © 2002  Addison Wesley

(linear looks 
constant for 
small inputs)



Figure 5.2
Running times for moderate inputs
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Figure 5.3
Functions in order of increasing growth rate

Data Structures & Problem Solving using JAVA/2E Mark Allen Weiss      © 2002  Addison Wesley

a.k.a "log linear"

The answer to most big-
Oh questions is one of 
these functions



} Drop lower order terms and constant factors

} 7n – 3 is O(n)

} 8n2logn + 5n2 + n is O(n2logn)



} Given functions f(n) and g(n), we say that f(n) is O(g(n)) if and 
only if there exist constants c > 0 and n0 ≥ 0 such that

f(n) ≤ c g(n) for all n ≥ n0.

} For this to make sense, f(n) and g(n) should be functions over 
non-negative integers.

Q8



} A function f(n) is (in) O(g(n)) if there exist two 
positive constants c and n0 such that for all  n³ n0,  
f(n) £ c g(n)

} Q: How to prove that f(n) is O(g(n))? 
A: Give c and n0

} Ex: f(n) = 4n + 15, g(n) = ???.     

Assume that all functions have non-negative 
values, and that we only care about n≥0.  For 
any function g(n), O(g(n)) is a set of functions. 

Q9



} A function f(n) is (in) O(g(n)) if there exist two 
positive constants c and n0 such that for all  n³ n0,  
f(n) £ c g(n)

} Q: How to prove that f(n) is O(g(n))? 
A: Give c and n0

} Ex 2: f(n) = n + sin(n), g(n) = ??? 

Q10


