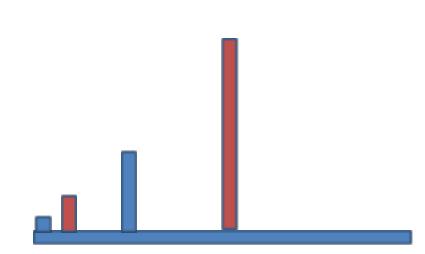

Pick up an in-class quiz from the table near the door


CSSE 230 Data Structures and Algorithm Analysis Day 1

$$\sum_{i=1}^{n} i = 1 + 2 + 3 + \dots + n = \frac{n^2 + n}{2}$$

- two visual representations

Brief Course Intro Math Review Growable Array Analysis

Student Introductions

Roll call

- Introduce yourself to the person next to you
- You'll share more with classmates on Piazza discussion forum, like what work you've done that you are most proud of.
- Please write more than a couple of sentences about yourself.

Introductions

Nate

- At R-H since 2014. Math 2014-16, CSSE since 2016.
- B.S., Harvey Mudd in Math–CS
- Ph.D., Georgia Tech in Algorithms, Combinatorics, & Optimization
- Special interests in cryptography, algorithms, discrete math
- Courses taught at Rose:
 - CSSE230, Design & Analysis of Algorithms, Cryptography
 - DisCo 1 & 2, Calc 2 & 3, DE 1
- Hobbies: cycling, running, triathlon, classical music, travel

Goal: independently design, develop, and debug software that uses correct, clear, and efficient algorithms and data structures

D	
Prove: An AVL Tree has	_
Ollow and Tree has	-1
I VUUU ni maissis	1
Proof: Puril a	1
Proof: By definition,	ı
height(T_L) - height(T_R) $ \le 1$	ı
height/ T	ı
	ı
	ı
	ட

Topic	I do	You do	You practice	You show off
Analysis		Listen, follow,	Homework sets	Tests
Programming			Major programs	Tests, project

Why *efficient* algorithms?

Here's \$1,000,000,000:

- Find serial number KB46279860I
- If unsorted, you could look at all 10 million bills.
- If sorted by serial number, binary search finds it by only looking at ____ bills.

How to succeed in CSSE230

- Work hard
 - Re-do CSSE220 stuff as needed to make sure your foundations (recursion and linked lists) are strong
- Take initiative in learning
 - Read the text, search Javadocs, come for help
- Focus while in this class
 - https://www.rosehulman.edu/class/cs/csse230/201820/MiscDocuments/LaptopsA reGreatButNotDuringaLectureoraMeeting.pdf (11/26/2017 NYT)
- Start early and plan for no all-nighters
 - Two assignments each week: 1 homework set and 1 major program
- Never give or use someone else's answers

Tools

- https://www.rose-hulman.edu/class/csse/csse230/201910/Schedule/ schedule, reading/HW/program assignments, room #s!
 - Read the Syllabus: Tomorrow's quiz will start with questions about it.
- www.piazza.com, not email: homework questions and announcements
 - If you email, I'll usually reply, "Great question! Please post it to Piazza"
 - It should auto-email you whenever there is a post.
- <u>moodle.rose-hulman.edu</u>: gradebook, homework pdf turn-in, peer evaluations, solutions

After today's class, you will be able to...

- analyze runtimes of code snippets by counting instructions.
- explain why arrays need to grow as data is added.
- derive the average and worst case time to insert an item into an array [GrowableArray exercise]

Analysis/Math Review

Notation

Floor

$$\lfloor x \rfloor$$
 = the largest integer $\leq x$

Ceiling

$$\lceil x \rceil$$
 = the smallest integer $\geq x$

• java.lang.Math, provides the static methods floor() and ceil()

Summations

- Summations
 - general definition:

$$\sum_{i=s}^{t} f(i) = f(s) + f(s+1) + f(s+2) + \dots + f(t)$$

 where f is a function, s is the start index, and t is the end index

Geometric progressions: each term is a constant multiple of the previous term

- Geometric progression: $f(i) = a^{i}$
 - given an integer $n \ge 0$ and a real number $0 \le a \ne 1$

$$\sum_{i=0}^{n} a^{i} = 1 + a + a^{2} + ... + a^{n} = \frac{1 - a^{n+1}}{1 - a}$$
 Memorize this formula!

geometric progressions exhibit exponential growth

Exercise: What is $\sum_{i=1}^{6} 3^{i}$?

This will be useful for today's Growable Arrays exercise!

The sum can also be

$$\frac{a^{n+1}-1}{a-1}$$

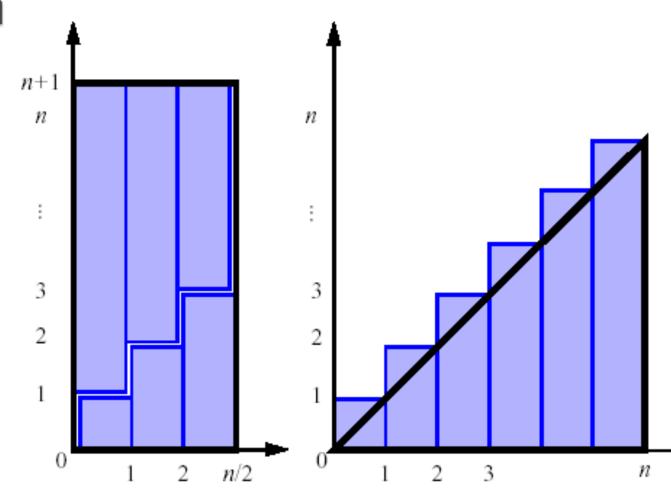
Arithmetic progressions: constant difference Most important to us: a difference of 1

- Arithmetic progressions:
 - An example

Memorize this

formula!
$$\sum_{i=1}^{n} i = 1 + 2 + 3 + ... + n = \frac{n^2 + n}{2}$$

Exercise: \sum_{i}


$$\sum_{i=21}^{40} i$$

Also useful for today's Growable Arrays exercise!

Visual proofs of the summation formula

$$\sum_{i=1}^{n} i = 1 + 2 + 3 + \dots + n = \frac{n^2 + n}{2}$$

- two visual representations

Application: Find exact and big-Oh Q13-14, turn in runtime of Selection Sort

```
for (i=n-1; i>0; i--) {
    int maxPos = 0;
    for (int j = 0; j \le i; j++) {
        if (a[j] > a[maxPos]) {
             maxPos = j;
    swap a[maxPos] with a[i];
```

- •How many comparisons of array elements are done?
 - •Exact? Big-Oh?
- •How many times are array elements copied?

Growable Array Analysis

An exercise in doubling, done by pairs of students

Arrays are ubiquitous

- Basis for ArrayLists, sorting, and hash tables
- Why? O(1) access to any position, regardless of the size of the array.

Limitation:

- Fixed capacity!
- If it fills, you need to re-allocate memory and copy items
 - How efficient is this?
 - Consider two schemes: "add 1" and "double"

Work on Growable Array Exercise

- Work with a partner
- Hand in the document before you leave today if possible. Otherwise due start of day 2's class.
- Get help as needed from me and the assistants.