
1/17/2018

1

Red-black trees

After today, you should be able to…
…determine if a tree is a valid red/black tree
…perform top-down insertion in a red/black tree

• Milestone 1 is graded on unit tests only.

• But…be sure to fix efficiency issues for the future
• See final notes in specification
• Cannot recalculate size or height to update balance

codes or handle rotations.
• You can recalculate rank and balance codes: these are

O(1) computations per node.
• Suggestion: update rank on the way down the tree.
• Update balance codes and do rotations on the way up.
• So each is O(log n) total
• Know when you can stop! (day 14 slides have the algorithm

for insertion, you’ll have to think about deletion)

1/17/2018

2

1. It is a BST
2. Every node is either colored red or black.
3. The root is black.
4. No two successive nodes are red.
5. Every path from the root to a null node has the

same number of black nodes (“perfect black
balance”)

1

Runtime is O(height)
Since it’s a BST, runtime of insert and delete
should also be O(height)

1/17/2018

3

Best-case: if all nodes black, it is ~log n.
Worst case: every other node on the longest path
is red. Height ~2 log n.
Note: Not height-balanced:

Sometimes taller but often shorter on
average.

• Like BST:
• Insert at leaf
• Color it red (to keep perfect black balance)

• But could make two reds in a row?
• On the recursive travel back up the tree (like AVL),

• rotate (single- and double-, like AVL)
• and recolor (new)
• Show now that various “rotation+recoloring”s fix two

reds in a row while maintaining black balance.

• At end of insert, always make root of the
entire tree black (to fix property 3).

2

1/17/2018

4

Copyright © 2010 Pearson Education

2

Copyright © 2010 Pearson Education

2

1/17/2018

5

Copyright © 2010 Pearson Education

2

• Bottom-Up insertion strategy must be
recursive.

• An alternative:
• If we ever had a black node with two red children, swap the

colors and black balance stays.
• Details next…

2

X

Y Z

X

ZY

1/17/2018

6

Situation: A black node with two red children.

Action: - Recolor the node red and the
children black (if root, make black).

- If the parent is red, perform rotations,
otherwise continue down the tree

Does this change black balance? No.

X

Y Z

X

ZY

• On the way down the tree to the insertion point, if ever see a
black node with two red children, swap the colors.

If X’s parent is red, perform rotations,
otherwise continue down the tree

• The rotations are done while traversing down the tree to the
insertion point.
• Avoid rotating into case (c) (2 red siblings) altogether.

• Top-Down insertion can be done with loops without recursion or
parent pointers, so is slightly faster.

2

X

Y Z

X

ZY

1/17/2018

7

• Rotate when an insertion or color flip
produces two successive red nodes.

• Rotations are just like those for AVL trees:
• If the two red nodes are both left children or both

right children, perform a single rotation.
• Otherwise, perform a double rotation.

• Except we recolor nodes instead of adjusting
their heights or balance codes.

1. Insert: 1, 2, 3, 4, 5, 6, 7, 8

2. Insert: 7, 6, 5, 4, 3, 2, 1, 1
• Relationship with (1)?
• Duplicates not inserted.

3. Insert: 10, 85, 15, 70, 20, 60, 30, 50, 65,
80, 90, 40, 5, 55

4. Use applet [linked to in Schedule for today]
to check your work.

3

1/17/2018

8

• Java uses:

• Slightly faster than AVL
trees

• What’s the catch?
• Need to maintain pointers

to lots of nodes (child,
parent, grandparent, great-
grandparent, great-great-
grandparent)

• The deletion algorithm is
nasty.

