
Maximum Contiguous Subsequence Sum

Q0, 1

After today’s class you will be able to:
provide an example where an insightful algorithm can be much

more efficient than a naive one.

} Sit with your StacksAndQueues partner now

} Day 2 quizzes returned

} Why Math?

So why would we ever sort first to do binary search?

Reminder: we use 0-based indexing.

Q1

} Exhaustive search: find every Si,j

} Is MCSS q(n2)?
◦ Showing that a problem is W (g(n)) is much tougher. How do

you prove that it is impossible to solve a problem more
quickly than you already can?

◦ Can we find a yet faster algorithm?
� If so, it can’t use exhaustive search. (Why?)

} Consider {1, 4, –2, 3, -8, 4, -6, 5, -2}

} Any subsequences you can safely ignore?
◦ Discuss with another student (2 minutes)

Q2

} We noted that a max-sum sequence Si,j
cannot begin with a negative number.

} Generalizing this, it cannot begin with a
prefix Ai,k with k<j whose sum is negative.

◦ Proof by contradiction. Suppose that Si,j is a max-
sum sequence and that Si,k is negative. In that case,
a larger-sum contiguous sequence can be created
by removing Si,k. However, this violates our
assumption that Si,j is a max-sum contiguous
sequence.

Q3

} All contiguous subsequences that border the
maximum contiguous subsequence must
have negative or zero sums.
◦ Proof by contradiction. Consider a contiguous

subsequence that borders an MCSS sequence.
Suppose it has a positive sum. We can then create a
larger max-sum sequence by combining both
sequences. This contradicts our assumption of
having found a max-sum sequence.

Q4

} Imagine we are growing subsequences from a fixed left
index i. That is, we compute the sums Si,j for increasing
j.

} Claim: If there is such an Si,j that “just became negative”
(for the first time, with the inclusion of the jth term), any
subsequence starting in between i + 1 and j cannot be a
MaxCSS (unless its sum equals an already-found
MaxCSS)!

} In other words, as soon as we find that Si,j is negative,
we can skip all sums that begin with any of Ai+1, …, Aj.

} We can “skip i ahead” to be j + 1.

} Proof by Contradiction. Suppose there is such a MaxCSS, namely Sp,q,
where i+1 £ p £ j.

i jSi,j just became negative!

qpCase 1. q > j MaxCSS

qpCase 2. q ≤ j MaxCSS

} Key point. What must be true of the following sums?

Si,p–1 Sp,j

Starts with a negative prefix. Violates Obs. 1!

Borders a subsequence with nonnegative sum.
Violates Obs. 2, or there is a previous MaxCSS with the
same sum.

≥ 0 < 0

The DoublyLinkedList class does not have a remove method, so calling list.remove() is not possible without modifying the code for the DoublyLinkedList class, which you are not allowed to do.

Si,j is negative. So,
skip ahead per
Observation 3

Running time is O (?)
How do we know?

Q5, Q6

} MCSS is O(n)!
} Is MCSS W(n) and thus q(n)?
◦ Yes, intuitively: we must at least examine all n elements

} From SVN, checkout MCSSRaces

} Study code in MCSS.main()

} For each algorithm, how large a sequence can
you process on your machine in less than 1
second?

} The first algorithm we think of may be a lot
worse than the best one for a problem

} Sometimes we need clever ideas to improve it

} Showing that the faster code is correct can
require some serious thinking

} Programming is more about careful
consideration than fast typing!

Q10-11

} If GM had kept up with technology like the
computer industry has, we would all be driving
$25 cars that got 1000 miles to the gallon.

- Bill Gates

} If the automobile had followed the same
development cycle as the computer, a Rolls-
Royce would today cost $100, get a million miles
per gallon, and explode once a year, killing
everyone inside.

- Robert X. Cringely

A preview of Abstract Data
Types and Java Collections

This week’s major program

Intro: Ideas for how to implement stacks and
queues using arrays and linked lists

How to write your own growable circular
queue:
1. Grow it as needed (like day 1exercise)
2. Wrap-around the array indices for more

efficient dequeuing

Q7-9

Analyze implementation choices for Queues – much
more interesting than stacks! (See HW)

Application: An exercise in writing cool
algorithms that evaluate mathematical expressions:

Evaluate Postfix: 6 7 8 * +
(62. How?)

Convert Infix to Postfix: 6 + 7 * 8
(6 7 8 * + You’ll figure out how)

Both using stacks.
Read assignment for hints on how.

} Plan when you'll be working. We suggest that
your first meeting should be today or
tomorrow

} Review the pair programming video as
needed

} Check out the code and read the specification
together

