

After today's class you will be able to:
state and solve the MCSS problem on small arrays by observation find the exact runtimes of the naive MCSS algorithms

Homework 1

- Is it true that $\log _{a}(n)$ is $\theta\left(\log _{b}(n)\right)$?
- Complete homework 1 to find out the exciting conclusion!
- Here is the graph for $a=2$ and $b=10$:
- Is it true that 3^{n} is $\theta\left(2^{n}\right)$?
- Also: Reading due next class and short HW 2 posted (skim now).

Limits and Asymptotics

- Consider the limit

$$
\lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}
$$

- What does it say about asymptotic relationship between f and g if this limit is...
-0?
- finite and non-zero?
- infinite?

Apply this limit property to the following pairs of functions
 1. n and n^{2}

2. $\log \mathrm{n}$ and n (on these questions and solutions

ONLY, let log n mean natural log)
3. $n \log n$ and n^{2}
4. $\log _{a} n$ and $\log _{b} n(a<b)$
5. n^{a} and $\mathrm{a}^{\mathrm{n}}(\mathrm{a}>1)$
6. a^{n} and $b^{n}(a<b)$

Recall I'Hôpital's rule: under appropriate conditions,

$$
\lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}=\lim _{n \rightarrow \infty} \frac{f^{\prime}(n)}{g^{\prime}(n)}
$$

Answers

1. n is $O\left(n^{2}\right) ; n^{2}$ is $\Omega(n)$
2. $\log n$ is $O(n) ; n$ is $\Omega(\log n)$
3. $n \log n$ is $O\left(n^{2}\right) ; n^{2}$ is $\Omega(n \log n)$. (Use l'Hopital's rule)
4. $\log _{a} n$ is $\Theta\left(\log _{b} n\right)$ (so $\log _{b} n$ is $\Theta\left(\log _{a} n\right)$) Hint: Rewrite $\log _{a} n$ as $\log n / \log a$ and $\log _{b} n$ as $\log n / \log b$. Simplifying, we see that the original limit is a constant: no differentiating is needed here either.
5. $\quad n^{a}$ is $O\left(a^{n}\right)$ and is $o\left(a^{n}\right)$; a^{n} is $\Omega\left(n^{a}\right)$ and $\omega\left(n^{a}\right)$

Hint: use l'Hopital's rule repeatedly until numerator goes to 0 .
6. $\quad a^{n}$ is $O\left(b^{n}\right)$ and is $o\left(b^{n}\right)$; b^{n} is $\Omega\left(a^{n}\right)$ and $\omega\left(a^{n}\right)$

Hint: rewrite as $(a / b)^{n}$. Because $\mathrm{a}<\mathrm{b}, \mathrm{a} / \mathrm{b}<1$, and when $\mathrm{x}<1$, x^{n} approaches 0 as n goes to infinity.

Thoughts on Teaming

Next week's programming assignment is with a partner

Two Key Rules

- No prima donnas
- Working way ahead, finishing on your own, or changing the team's work without discussion:
- harms the education of your teammates
- No laggards
- Coasting by on your team's work:
- harms your education
- Both extremes
- are selfish
- may result in a failing grade for you on the project

Grading of Team Projects

- We'll assign an overall grade to the project
- Grades of individuals will be adjusted up or down based on team members' assessments
- At the end of the project each of you will:
- Rate each member of the team, including yourself
- Write a short Performance Evaluation of each team member with evidence that backs up the rating
- Positives
- Key negatives

Ratings

Excellent-Consistently did what he/she was supposed to do, very well prepared and cooperative, actively helped teammate to carry fair share of the load
Very good-Consistently did what he/she was supposed to do, very well prepared and cooperative
Satisfactory-Usually did what he/she was supposed to do, acceptably prepared and cooperative
Ordinary-Often did what he/she was supposed to do, minimally prepared and cooperative
Marginal-Sometimes failed to show up or complete tasks, rarely prepared
Deficient—Often failed to show up or complete tasks, rarely prepared
Unsatisfactory-Consistently failed to show up or complete tasks, unprepared
Superficial-Practically no participation
No show-No participation at all

Maximum Contiguous Subsequence Sum

A deceptively deep problem with a surprising solution. $\{-3,4,2,1,-8,-6,4,5,-2\}$

A Nice Algorithm Analysis Example

- Problem: Given a sequence of numbers, find the maximum sum of a contiguous subsequence.
- Why study?

- Positives and negatives make it interesting. Consider:
- What if all the numbers were positive?
- What if they all were negative?
-What if we left out "contiguous"?
- Analysis of obvious solution is neat
- We can make it more efficient later.

Formal Definition: Maximum

Q4-6 Contiguous Subsequence Sum
Problem definition: Given a non-empty sequence of n (possibly negative) integers $A_{1}, A_{2}, \ldots, A_{n}$, find the maximum consecutive subsequence $S_{i, j}=\sum_{k=i}^{j} A_{k}$, and the corresponding values of i and j.

1 -based indexing. But we'll use 0 -based indexing

- Quiz questions:
\circ In $\{-2,11,-4,13,-5,2\}, S_{1,3}=$?
\circ In $\{1,-3,4,-2,-1,6\}$, what is MCSS?
- If every element is negative, what's the MCSS?

Write a simple correct algorithm now

- Must be easy to explain
- Correctness is KING. Efficiency doesn't matter yet.
- 3 minutes
- Examples to consider:
- $\{-3,4,2,1,-8,-6,4,5,-2\}$
- $\{5,6,-3,2,8,4,-12,7,2\}$

First Algorithm

Find the sums of all subsequences
public final class MaxSubTest \{ private static int seqStart $=0$; private static int seqEnd $=0$;
/* First maximum contiguous subsequence sum algorithm. * seqStart and seqEnd represent the actual best sequence. */
public static int maxSubSum1 (int [] a) \{
i: beginning of
subsequence int maxSum $=0$; subsequence for (int $i=0 ; i<a . l e n g t h ; i++$)

Analysis of this Algorithm

- What statement is executed the most often?
, How many times?
//In the analysis we use " n " as a shorthand for "a .length "
for (int $i=0 ; i<a . l e n g t h ; i++$)
for (int j = i; j <a.length; j++) \{
int thisSum $=0$;

$$
\begin{aligned}
& \text { for (int } k=i ; k<=j ; k++ \text {) } \\
& \text { thisSum }+=a[k] ;
\end{aligned}
$$

Solution

```
    //In the analysis we use "n" as a shorthand for "a.length "
for( int i = 0; i < a.length; i++ )
    for( int j = i; j < a.length; j++ ) {
        int thisSum = 0;
        for( int k = i; k <= j; k++ )
        thisSum += a[ k ];
```


Interlude

- Computer Science is no more about computers than astronomy is about \qquad
Donald Knuth

Interlude

- Computer Science is no more about computers than astronomy is about telescopes.

Donald Knuth

Where do we stand?

- We showed MCSS is $O\left(n^{3}\right)$.
- Showing that a problem is $\mathrm{O}(\mathrm{g}(\mathrm{n})$) is relatively easy - just analyze a known algorithm.
- Is MCSS $\Omega\left(n^{3}\right)$?
- Showing that a problem is $\Omega(\mathrm{g}(\mathrm{n})$) is much tougher. How do you prove that it is impossible to solve a problem more quickly than you already can?
- Or maybe we can find

```
f(n) is O(g(n)) if f(n) scg(n) for all n \geq no
    So O gives an upper bound
f(n) is \Omega(g(n)) if f(n)\geqcg(n) for all n \geq no
    So }\Omega\mathrm{ gives a lower bound
f(n) is 0(g(n)) if c
    So 0 gives a tight bound
    f(n) is 0(g(n)) if it is both O(g(n)) and \Omega(g(n))
```

What is the main source of the simple algorithm's inefficiency?
//In the analysis we use " n " as a shorthand for "a.length "
for (int $i=0 ; i<a . l e n g t h ; i++$)
for (int j $=1 ; j<a . l e n g t h ; ~ j++) ~\{$ int thisSum $=0$;
for (int $k=i ; k<=j ; k++$) thisSum $+=a[k]$;
, The performance is bad!

Eliminate the most obvious

 inefficiency...for (int $i=0 ; i<a . l e n g t h ; i++$) \{ int thisSum $=0$; for (int $\mathbf{j}=\mathbf{i} ; \mathbf{j}<a . l e n g t h ; \mathbf{j}++$) \{ thisSum += a[j];
if (thisSum $>$ maxSum) \{ maxSum = thisSum; seqStart $=\mathbf{i}$; seqEnd $=\mathbf{j}$;
\} \quad This is $\Theta(?)$

MCSS is $O\left(n^{2}\right)$

- Is MCSS $\Omega\left(\mathrm{n}^{2}\right)$?
- Showing that a problem is $\Omega(\mathrm{g}(\mathrm{n})$) is much tougher. How do you prove that it is impossible to solve a problem more quickly than you already can?
- Can we find a yet faster algorithm?

$$
\begin{aligned}
& f(n) \text { is } O(g(n)) \text { if } f(n) \leq c g(n) \text { for all } n \geq n_{0} \\
& \text { So } O \text { gives an upper bound } \\
& f(n) \text { is } \Omega(g(n)) \text { if } f(n) \geq c g(n) \text { for all } n \geq n_{0} \\
& \text { So } \Omega \text { gives a lower bound } \\
& f(n) \text { is } \theta(g(n)) \text { if } c_{1} g(n) \leq f(n) \leq c_{2} g(n) \text { for all } n \geq n_{0} \\
& \text { So } \theta \text { gives a tight bound } \\
& f(n) \text { is } \theta(g(n)) \text { if it is both } O(g(n)) \text { and } \Omega(g(n))
\end{aligned}
$$

Q10-11

Can we do even better?

Tune in next time for the exciting conclusion!

