CSSE 230 Day 2

Growable Arrays Continued
Big-Oh and its cousins

Submit Growable Array exercise

Answer Q1-3 from today's in-class quiz.

Agenda and goals

- Finish course intro
- Growable Array recap
- ▶ Big-Oh and cousins
- After today, you'll be able to
 - Use the term *amortized* appropriately in analysis
 - \circ explain the meaning of big-Oh, big-Omega (Ω), and big-Theta (θ)
 - apply the definition of big-Oh to prove runtimes of functions

Announcements and FAQ

- You will not usually need the textbook in class
- All should do piazza introduction post (a few students left)

You must demonstrate programming competence on exams to succeed

- See syllabus for exam weighting and caveats.
- Think of every program you write as a practice test
 - Especially HW4 and test 2a

Warm Up and Stretching thoughts

- Short but intense! ~45 lines of code total in our solutions to all but Adder
- Be sure to read the description of how it will be graded. Note how style will be graded.
- Demo: Running the JUnit tests for test, file, package, and project

Demo: Run the Adder program

 $Q_{2}-3$

Questions?

- About Homework 1?
 - Aim to complete tonight, since it is due after next class
 - It is substantial
 - The last problem (the table) is worth lots of points!
- About the Syllabus?

Homework 1 help

How many times does sum++ run?

```
for (i = 4; i < n; i++)
for (j = 0; j <= n; j++)
sum++;
```

Why is this one so easy? (does the inner loop depend on outer loop?)

What if inner were $(j = 0; j \le i; j++)$?

Homework 1 help

How many times does sum++ run?

Be precise, using floor/ceiling as needed, to get full credit.

Growable Arrays Exercise

Daring to double

Growable Arrays Table

N	$\mathbf{E}_{ ext{N}}$	Answers for problem 2
4	0	0
5	0	0
6	5	5
7	5	5 + 6 = 11
10	5	5+6+7+8+9=35
11	5 + 10 = 15	5+6+7+8+9+10=45
20	15	sum(i, i=519) = 180 using Maple
21	5 + 10 + 20 = 35	sum(i, i=520) = 200
40	35	sum(i, i=539) = 770
41	5 + 10 + 20 + 40 = 75	sum(i, i=540) = 810

Doubling the Size

- Doubling each time:
 - Assume that $N = 5(2^k) + 1$.
- ▶ Total # of array elements copied:

k	N	#copies
0	6	5
1	11	5 + 10 = 15
2	21	5 + 10 + 20 = 35
3	41	5 + 10 + 20 + 40 = 75
4	81	5 + 10 + 20 + 40 + 80 = 155
k	$= 5 (2^k) + 1$	$5(1 + 2 + 4 + 8 + + 2^k)$

Express as a closed-form expression in terms of K, then express in terms of N

Doubling the Size (solution)

- Assume that $N = 5(2^k) + 1$.
- Total # of array elements copied
 = 5(1 + 2 + 4 + 8 + ... + 2^k)
- Do in terms of k, then in terms of N

Adding One Each Time

▶ Total # of array elements copied:

#copies
5
5 + 6
5 + 6 + 7
5 + 6 + 7 + 8
5 + 6 + 7 + 8 + 9
m

Express as a closed-form expression in terms of N

Conclusions

Q4-5

- What's the amortized cost of adding an additional string...
 - in the doubling case?
 - in the add-one case?

Amortized cost means the "average per-operation cost" while adding to a single GrowableArray over time.

So which should we use?

Logarithm review

Q6

Review these as needed

- Logarithms and Exponents
 - properties of logarithms:

$$\log_b(xy) = \log_b x + \log_b y$$

$$log_b(x/y) = log_b x - log_b y$$

$$log_bx^\alpha=\alpha log_bx$$

$$log_b \ x = \frac{log_a x}{log_a b}$$

- properties of exponentials:

$$a^{(b+c)} = a^b a^c$$

$$a^{bc} = (a^b)^c$$

$$a^b/a^c = a^{(b-c)}$$

$$b = a \frac{\log_a b}{}$$

$$b^c = a^{c*log_ab}$$

Practice with exponentials and logs (Do these with a friend after class, not to turn in)

Simplify: Note that $\log n$ (without a specified) base means $\log_2 n$. Also, $\log n$ is an abbreviation for $\log(n)$.

- 1. $\log (2 n \log n)$
- 2. log(n/2)
- **3.** log (sqrt (n))
- 4. log (log (sqrt(n)))
- 5. $log_4 n$
- 6. $2^{2 \log n}$
- 7. if $n=2^{3k} 1$, solve for k.

Where do logs come from in algorithm analysis?

Solutions No peeking!

Simplify: Note that $\log n$ (without a specified) base means $\log_2 n$. Also, $\log n$ is an abbreviation for $\log(n)$.

- 1. $1 + \log n + \log \log n$
- 2. log n 1
- 3. $\frac{1}{2} \log n$
- 4. $-1 + \log \log n$

- 5. $(\log n) / 2$
- 6. n^2
- 7. n+1=2^{3k} log(n+1)=3k k= log(n+1)/3

A: Any time we cut things in half at each step (like binary search or mergesort)

Running Times

- Algorithms may have different time complexity on different data sets
- What do we mean by "Worst Case"?
- What do we mean by "Average Case"?
- What are some application domains where knowing the Worst Case time complexity would be important?
- http://cacm.acm.org/magazines/2013/2/160173-the-tailat-scale/fulltext

Asymptotic Analysis

- We only care what happens when N gets large
- Is the function linear? quadratic? exponential?

		The engineer to most his
Function	Name	The answer to most big Oh questions is one of
с	Constant	these functions
$\log N$	Logarithmic	
$\log^2 N$	Log-squared	
N	Linear	
$N \log N$	N log N ←	a.k.a "log linear"
N ²	Quadratic	
N 3	Cubic	
2^N	Exponential	

Simple Rule for Big-Oh

- Drop lower order terms and constant factors
- \rightarrow 7n 3 is O(n)
- $ightharpoonup 8n^2 logn + 5n^2 + n is O(n^2 logn)$

Q7a

Formal Definition of Big-Oh

- Given functions f(n) and g(n), we say that f(n) is O(g(n)) if and only if $f(n) \le c$ g(n) for all $n \ge n_0$.
- Two constants: c > 0 is a real number and $n_0 \ge 0$ is an integer.
- f(n) and g(n) are functions over non-negative integers.

Q8

To prove Big Oh, find 2 constants

- A function f(n) is (in) O(g(n)) if there exist two positive constants **c** and \mathbf{n}_0 such that for all $n \ge n_0$, $f(n) \le c g(n)$
- Q: How to prove that f(n) is O(g(n))?
 A: Give c and n₀

Assume that all functions have non-negative values, and that we only care about $n \ge 0$. For any function g(n), O(g(n)) is a set of functions.

 \bullet Ex: f(n) = 4n + 15, g(n) = ???.

Q9

To prove Big Oh, find 2 constants

- ▶ A function f(n) is (in) O(g(n)) if there exist two positive constants \mathbf{c} and $\mathbf{n_0}$ such that for all $n \ge n_0$, $f(n) \le \mathbf{c} g(n)$
- Q: How to prove that f(n) is O(g(n))?A: Give c and n₀
- Ex 2: $f(n) = n + \sin(n)$, g(n) = ???

Q7bc,10

Big-Oh, Big-Omega, Big-Theta O() Ω () θ ()

- f(n) is O(g(n)) if f(n) ≤ cg(n) for all n ≥ n₀
 So big-Oh (O) gives an upper bound
- ▶ f(n) is $\Omega(g(n))$ if $f(n) \ge cg(n)$ for all $n \ge n_0$ So big-omega (Ω) gives a lower bound
- f(n) is $\theta(g(n))$ if it is both O(g(n)) and $\Omega(g(n))$ Or equivalently:
- ▶ f(n) is $\theta(g(n))$ if $c_1g(n) \le f(n) \le c_2g(n)$ for all $n \ge n_0$ So big-theta (θ) gives a tight bound
- ► True or false: 3n+2 is $O(n^3)$ ► True or false: 3n+2 is $O(n^3)$

Uses of O, Ω , Θ

By definition, applied to functions.

"
$$f(n) = n^2/2 + n/2 - 1$$
 is $\Theta(n^2)$ "

Can also be applied to an algorithm, referencing its running time: e.g., when f(n) describes the number of executions of the most-executed line of code.

"selection sort is $\Theta(n^2)$ "

Finally, can be applied to a *problem*, referencing its complexity: the running time of the best algorithm that solves it.

"The sorting problem is O(n2)"

Big-Oh Style

- Give tightest bound you can
 - Saying 3n+2 is $O(n^3)$ is true, but not as useful as saying it's O(n)
 - On a test, we'll ask for Θ to be clear.
- Simplify:
 - You could also say: 3n+2 is $O(5n-3\log(n) + 17)$
 - And it would be technically correct...
 - It would also be poor taste ... and your grade will reflect that.

Efficiency in context

Q11-13, submit quiz

- There are times when one might choose a higher-order algorithm over a lower-order one.
- Brainstorm some ideas to share with the class

C.A.R. Hoare, inventor of quicksort, wrote: *Premature optimization is the root of all evil.*