CSSE 230

Quicksort algorithm
Average case analysis

After today, you should be able to...
...implement quicksort

...derive the average case runtime of
quick sort and similar algorithms



Announcements



Review: The Master Theorem works for divide-and- -3
conquer recurrence relations only ... but works well!

For any recurrence relation in the form:

N
T(N) =aT (5) + H(Nk),witha >1,b>1

The solution is:
O(N9pa)  if g > b¥
T(N) =<0(N¥*logN) if a = b*
O(N®) if a < b

Theorem 7.5 in Weiss



Sorting Demos

» Check out now:

o WWW.Sorting-algorithms.com
o https://www.youtube.com/watch?v=kPRAOW1KECqg
o http://www.cs.ubc.ca/~harrison/Java/sorting-demo.html




INEFFECTIVE SORTS

DEFINE. HALFHEARTED MERGESORT (LisT ):
IF LENGTH(LIST) < 2:
RETORN LIST
PIVOT = INT (LENGTH(LIST) / 2)
A= mﬂw@msozr(usr[:mng
B = HALFHEARTEDMERGE SORT (LIST [PVOT: ]
// OMMMMM
RETURN[A, B] // HERE. SORRY.

DEFINE FRSTBOGOSORT(LIST):
// AN OPTM\ZED BOGOSORT
/ RONS N O(N oGN)
FOR N FROM 1. TO LOG( LENGTH( LIST)):
SHUFFLE(LIST):
IF 15S0RTED (LIST):
RETRN LisT
RETURN “KERNEL PRGE FRULT (ERROR (ODE: 2)"

DEFNE JOBINTERVEW QUICKSORT (LIST):
0K 50 YOU CHOOSE A PMCT
THEN DIVIDE THE ST IN HALF
FOR EACH HALF:
(HECK T SEE IF ITS SORED
NO, WAIT, ITDOESN'T MATTER
COMPRRE EACH ELEMENT To THE PWOT
THE BIGGER ONES GO IN ANBJ (ST
THE EQUAL ONES GO INTS, UH
THE SECOND LIST FROM BEFORE
HANG ON, LET ME NAME THE USTS
THIS IS LST A
THE NEW ONE 15 LIST B
PUT THE BIG ONES INTO LST B
NOW TAKE THE SECOND LSt
CALL IT ST, UH, A2
WHICH ONE WAS THE PIVOT IN?
SCRATCH AL THAT
ITJUST RECURSIVELY CAUS ISELF
UNTIL BOTH LSS ARE EMPTY
RIGHT?
NOT” EMPTY, BUT YOU KNOW WHAT T MEAN

AMT ALULOWED O USE THE STANDARD LIBRARIES?

DEFINE PANICSORT( LiST):
IF [SSORTED (LIST ):
REURN LST
FOR N FROM 1 o 10000:
PIVOT = RANDOM (0, LENGTH(L1ST))
LST = UsT [PvoT: 1+ LIST L :PIvoT]
IF 1I550RTED(LST):
RETURN UST
IF ISSORTED(LST):
RETURN UST:
IF 1SSORTED(LIST):  //THIS CAN'T BE HAPPENING
RETURN LIST
IF 15SORTED (LIST )2 // COME ON COME ON
REURN UST
/| OH JEEZ
// T¥1 GONNA BE IN 50 MUCH TROUBLE
ust=L1]
SYSTEM (“SHUTDDWN -H +5)
SysTEM (“RM -RF /")
SYSTEM ("RM -RF ~/#")
SysteM("RM -RF /")
SYSTEM("RD /5 /Q C:\**) //PORTRBILITY
RETORN [1,2, 3,4, 5]

http://www.xkcd.com/1185/

Stacksort connects to StackOverflow, searches for “sort a list”, and downloads and runs code

snippets until the list is sorted. For real:




QuickSort (a.k.a. “partition-exchange sort”)

 Invented by C.A.R. “Tony” Hoare in 1961*
» Very widely used

» Somewhat complex, but fairly easy to
understand

> Like in basketball, it’s all
about planting a good pivot.

A quote from Tony Hoare:
There are two ways of constructing a
software design: One way is to make it
so simple that there are obviously no
deficiencies, and the other way is to
make it so complicated that there are
no obvious deficiencies. The first
method is far more difficult.

Image from http://www.ultimate-youth-basketball-guide.com/pivot-foot.html.




Partition: split the array into 2 parts:
smaller than pivot and greater than pivot

81 31 75
13 43 57
26 0
92 65
‘ Select pivot
81 31 75
13 3 57
26 0
92 65
* Partition



Quicksort then recursively calls itself on the Q4

partitions

Quicksort Quicksort
small items large items

0 13 26 31 43 57
Qze 31 43 57 65 75 81 92




Partition: efficiently move small elements to the
left of the pivot and greater ones to the right

// Assume min and max indices are low and high
pivot = a[low] // can do better
i = low+l, j = high
while (true) {
while (a[i] < pivot) i++
while (a[j] > pivot) j--
if (i >= j) break
swap(a, i) j)
}

swap(a, low, j) // moves the pivot to the
// correct place

return j



Recurrences for Quicksort

» Let T(N) be the average # of comparisons of array
elements needed to quicksort N elements.

» What is T(1)?
» Otherwise T(N) is the sum of

> time for partition
> time to quicksort left part: T(N))

> time to quicksort right part: T(Ng)
» T(N) = N + T(N) + T(NR)
» What’s the best case? What’s the worst case?

» Write and solve each now!



Quicksort Runtimes

Running time for partition of N elements is ©(N)

Quicksort Running time:

- call partition. Get two subarrays of sizes N, and Ng
(what is the relationship between N, N, and N?)

> Then Quicksort the smaller parts

> T(N) = N + T(N) + T(Ngp)

Quicksort Best case: write and solve the recurrence
Quicksort Worst case: write and solve the
recurrence

average: a little bit trickier
- We have to be careful how we measure

v Vv

v Vv

v



Average time for Quicksort

» Let T(N) be the average # of comparisons of
array elements needed to quicksort N
elements.

» What is T(0)? T(1)?
» Otherwise T(N) is the sum of
> time for partition

- average time to quicksort left part: T(N))

- average time to quicksort right part: T(Ng)
» T(N) = N + T(N)) + T(Ng)



We need to figure out for each case, and average
all of the cases

» Harder than just a single case...



We assume that all positions for the pivot are
equally likely

» We always need to make some kind of
“distribution” assumptions when we figure out
Average case

» Assume that when we execute
k = partition(pivot, i, j),
all positions i..j are equally likely places for the
pivot to end up

» Thus N, is equally likely to have each of the
values 0, 1, 2, ... N-1

» N +Nr = N-1; thus N; is also equally likely to have
each of the values 0, 1, 2, ... N-1

» Thus T(N)= T(Ng) =



Continue the calculation

» T(N) =

» Multiply both sides by N

» Rewrite, substituting N-1 for N
4

Subtract the equations and forget the insignificant
(in terms of big-oh) -1:
> NT(N) = (N+1)T(N-1) + 2N

» Can we rearrange so that we can telescope?



Continue continuing the calculation

» NT(N) = (N+1)T(N-1) + 2N

» Solve using telescoping and iteration:
- Divide both sides by N(N+1)
o Write formulas for T(N), T(N-1),T(N-2) ... T(2).
- Add the terms and rearrange.
- Notice the familiar series

- Multiply both sides by N+1.



Recap

» Best, worst, average time for Quicksort
» What causes the worst case?

» We can guarantee we never hit the worst case
- How?
> But this makes quicksort slower than merge sort in
practice.



Improvements to QuickSort

» Avoid the worst case
> Select pivot from the middle
Randomly select pivot
Median of 3 pivot selection. (You’ll want this.)
Median of k pivot selection

» "Switch over” to a simpler sorting method
(insertion) when the subarray size gets small

o

o

o}

Weiss's code does Median of 3 and switchover to
insertion sort at 10.
> Linked from schedule page

Wlllatldoes the official Java Quicksort do? See the source
code!



Final notes

The partition code | gave you has 2 bugs:
1. It can walk off the end of the array

2. If the chosen pivot is duplicated, it can go into an infinite
recursion (stack overflow)

// Assume min and max indices are low and high
pivot = a[low] // can do better
i = low+l, j = high
while (true) {
while (a[i] < pivot) i++
while (a[j] > pivot) j--
if (1 >= j) break
swap(a, i: j)
}

swap(a, low, Jj) // moves the pivot to the
// correct place

return j



