CSSE 230

Recurrence Relations

Sorting overview

$$
T(N)=\left\{\begin{array}{lll}
\theta\left(N^{\log _{b} a}\right) & \text { if } a>b^{k} & \text { After today, you should be able to... } \\
\theta\left(N^{k} \log N\right) & \text { if } a=b^{k} & \ldots \text { wolve recurrences for code snippets } \\
\theta\left(N^{k}\right) & \text { if } a<b^{k} & \text { recurrences using telescoping, trees, and the master method }
\end{array}\right.
$$

More on Recurrence Relations

A technique for analyzing recursive algorithms

Recap: Recurrence Relation

- An equation (or inequality) that relates the $\mathrm{N}^{\text {th }}$ element of a sequence to certain of its predecessors (recursive case)
- Includes an initial condition (base case)
- Solution: A function of N .

Example. Solve using backward substitution.
$\mathrm{T}(\mathrm{N})=2 \mathrm{~T}(\mathrm{~N} / 2)+\mathrm{N}$
$T(1)=1$

Solution strategies

Forward substitution
Backward substitution

Simple
Often can't solve
difficult relations

Recurrence trees

Visual
Great intuition for div-and-conquer

Telescoping

Widely applicable
Difficult to formulate
Not intuitive

Master Theorem

Immediate
Only for div-and-conquer
Only gives Big-Theta

Selection Sort

```
public static void selectionSort(int[] a) {
        //Sorts a non-empty array of integers.
        for (int last = a.length-1; last > 0; last--) {
            // find largest, and exchange with last
            int largest = a[0];
            int largePosition = 0;
            for (int j=1; j<=last; j++)
            if (largest < a[j]) {
                largest = a[j];
                largePosition = j;
            }
            a[largePosition] = a[last];
            a[last] = largest;
        }
}

\section*{Selection Sort: recursive version}
```

void sort(a) { sort(a, a.length-1); }
void sort(a, last) {
if (last == 0) return;
find max value in a from 0 to last
swap max to last
sort(a, last-1)
}

```

What's N?

\section*{2-3}

\section*{Telescoping}
- Basic idea: tweak the relation somehow so successive terms cancel
- Example: \(\mathrm{T}(1)=1, \mathrm{~T}(\mathrm{~N})=2 \mathrm{~T}(\mathrm{~N} / 2)+\mathrm{N}\)
\[
\text { where } \mathrm{N}=2^{\mathrm{k}} \text { for some } \mathrm{k}
\]
- Divide by N to get a "piece of the telescope":
\[
\begin{aligned}
T(N) & =2 T\left(\frac{N}{2}\right)+N \\
\Rightarrow \frac{T(N)}{N} & =\frac{2 T\left(\frac{N}{2}\right)}{N}+1 \\
\Longrightarrow \frac{T(N)}{N} & =\frac{T\left(\frac{N}{N}\right)}{\frac{N}{2}}+1
\end{aligned}
\]


\section*{Recursion tree}


\section*{Master Theorem}
- For Divide-and-conquer algorithms
- Divide data into one or more parts of the same size

Solve problem on one or more of those parts
- Combine "parts" solutions to solve whole problem
- Examples
- Binary search
- Merge Sort
- MCSS recursive algorithm we studied last time

\section*{Theorem 7.5 in Weiss}

\section*{Master Theorem}
- For any recurrence in the form:
\[
\begin{array}{r}
T(N)=a T(N / b)+\theta\left(N^{k}\right) \\
\quad \text { with } a \geq 1, b>1
\end{array}
\]
- The solution is
\[
T(N)= \begin{cases}\theta\left(N^{\log _{b} a}\right) & \text { if } a>b^{k} \\ \theta\left(N^{k} \log N\right) & \text { if } a=b^{k} \\ \theta\left(N^{k}\right) & \text { if } a<b^{k}\end{cases}
\]

Example: \(2 \mathrm{~T}(\mathrm{~N} / 4)+\mathrm{N}\)

Theorem 7.5 in Weiss

\section*{Master Recurrence Tree}

- How many nodes at level i? \(a^{i}\)
- How much work at level i? \(\quad a^{i} c\left(N / b^{i}\right)^{k}=c N^{k}\left(a / b^{k}\right)^{i}\)
- Index of last level? \(\log _{\mathrm{b}} \mathrm{N}\)

Summation: \(T(N) \leq c N^{k} \sum_{i=0}^{\log _{b} N}\left(\frac{a}{b^{k}}\right)^{i}\)

\section*{Interpretation}
- Upper bound on work at level i: \(c N^{k}\left(\frac{a}{b^{k}}\right)^{i}\)
- \(\mathrm{a}=\) "Rate of subproblem proliferation"
- \(b^{k}=\) "Rate of work shrinkage"
\begin{tabular}{|c|c|c|c|}
\hline Case & \(\mathrm{a}<\mathrm{b}^{\mathrm{k}}\) () & \(\mathrm{a}=\mathrm{b}^{\mathrm{k}}\) () & \(\mathrm{a}>\mathrm{b}^{\mathrm{k}}\) () \\
\hline As level i increases... & (3) work goes down! & ;) work stays same & work goes up! \\
\hline \(\mathrm{T}(\mathrm{N})\) dominated by work done at... & Root of tree & Every level similar & Leaves of tree \\
\hline Master Theorem says \(\mathrm{T}(\mathrm{N})\) in... & \(\Theta\left(N^{k}\right)\) & \(\Theta\left(N^{\mathrm{k}} \log \mathrm{N}\right)\) & \(\theta\left(N^{\log _{b} \mathrm{a}}\right)\) \\
\hline
\end{tabular}

\section*{Master Theorem - End of Proof}
- Case 1. \(\mathrm{a}<\mathrm{b}^{\mathrm{k}}\)
\[
c N^{k} \sum_{i=0}^{\log _{b} N}\left(\frac{a}{b^{k}}\right)^{i}
\]
\(c N^{k}\left(\frac{1-\left(a / b^{k}\right)^{\log _{b} N+1}}{1-\left(a / b^{k}\right)}\right) \approx c N^{k}\left(\frac{1}{1-\left(a / b^{k}\right)}\right)\)
- Case 2. \(\mathrm{a}=\mathrm{b}^{\mathrm{k}}\)
\(c N^{k} \sum_{i=0}^{\log _{b} N} 1=c N^{k}\left(\log _{b} N+1\right)\)
- Case 3. a > b \({ }^{\mathrm{k}}\)
\(c N^{k}\left(\frac{\left(a / b^{k}\right)^{\log _{b} N+1}-1}{\left(a / b^{k}\right)-1}\right) \approx c N^{k}\left(a / b^{k}\right)^{\log _{b} N}=c a^{\log _{b} N}=c N^{\log _{b} a}\)

\section*{Summary: Recurrence Relations}
- Analyze code to determine relation
- Base case in code gives base case for relation
- Number and "size" of recursive calls determine recursive part of recursive case
- Non-recursive code determines rest of recursive case
- Apply a strategy
- Guess and check (substitution)
- Telescoping
- Recurrence tree
- Master theorem

\section*{Sorting overview}

Quick look at several sorting methods
Focus on quicksort
Quicksort average case analysis

\section*{Elementary Sorting Methods}
- Name as many as you can
- How does each work?
- Running time for each (sorting N items)?
- best
- worst
- average
- extra space requirements
- Spend 10 minutes with a group of three, answering these questions. Then we will summarize

\section*{INEFFECTIVE SORTS}
\begin{tabular}{|c|}
\hline ```
DEFINE HALFHEARTEDMERGESORT(LIST):
    IF LENGIH(LIST) <2:
        RETURN LIST
    PINOT = INT(LENGTH(LIST) / 2)
    A = HLLFHEARTEDMERGESORT (LIST[:PNOT])
    B = HALFHEARTEDMERGESORT (UST[PVOT:])
    // UMMMMM
    RETURN[A,B] // HERE. SORRY.
``` \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \begin{tabular}{l}
DEFINE JOBINIERMEWQUICKSORT(LIST): \\
OK SO YOU CHOOSE A PNOT \\
THEN DIVDE THE LIST IN HALF \\
FOR EACH HALF: \\
CHECK TO SEE IF IT'S SORTED \\
NO, WAIT, ITDOESNT MATTER \\
COMPARE EACH EEENENT TO THE PIVOT \\
THE BGGER ONES GO INANEW LIST \\
THE EQUALONES GO INTO, UH \\
THE SECOND LIST FROM BEFORE \\
HANG ON, LET ME NAME THE USTS \\
THIS IS UST A \\
THE NEW ONE IS LISTB \\
PUTTHE BIG ONES INTO UST B \\
NOW TAKE THE SECOND LIST \\
CALL IT LST, UH, A2 \\
WHICH ONE WAS THE PIVOT IN? \\
SCRATCH ALL THAT \\
ITJUST RECURSIVELY CAULS TSELF \\
UNTL BOTH LISTS ARE EMPTY RIGHT? \\
NOT EMPTY, BUT YOU KNOW WHAT I MEAN \\
AM I ALLOWED TO USE THE STANDARD LIBRARIES?
\end{tabular} & ```
DEfinE PANICSORT(UST):
 IF ISSORTED(LIST):
 RETURN LIST
 FOR N FROM 1 TO 10000:
 PIVOT = RANDDMT(0, L巨NGTH(LIST))
 LIST = LSTT [PNOT:] + LIST[:PIVOT]
 IF ISSORTED(UST):
 RETURN LIST
 IF ISSORTED(UST):
 RETURN UST:
 IF ISSORTED(LIST)://THIS CAN'T BE HAPPENING
 RETURN LIST
 IF ISSORTED (LIST): // COME ON COME ON
 RETURN UST
 // OH JEEL
 // IMMGONNA BE IN SO MUCH TROUBLE
 LIST= []
 SYSTEM("SHUTDOWN -H +5")
 SYSTEM ("RM -RF./")
 SYSTEM ("RM -RF ~/*")
 SYSTEM("RM -RF/")
 SYSTEM("RD /S /Q C:*") //PORTABIITY
 RETURN [1, 2, 3, 4, 5]
``` \\
\hline
\end{tabular}

Stacksort connects to StackOverflow, searches for "sort a list", and downloads and runs code snippets until the list is sorted.```

