

CSSE 230 Day 22

Graphs and their representations

After this lesson, you should be able to
... define the major terminology relating to graphs
... implement a graph in code, using various conventions

Graphs

Terminology
Representations
Algorithms

Graph
 Definitions

A graph $G=(\mathrm{V}, \mathrm{E})$ is composed of:
V : set of vertices (singular: vertex)
E : set of edges
An edge is a pair of vertices. Can be unordered: $\mathrm{e}=\{\mathrm{u}, \mathrm{v}\} \quad$ (undirected graph) ordered: $\quad \mathrm{e}=(\mathrm{u}, \mathrm{v}) \quad($ directed graph/digraph $)$

Undirected
$V=\{A, B, C, D, E, F\}$
$E=\{\{A, B\},\{A, C\},\{B, C\},\{B, D\}$, $\{C, D\},\{D, E\},\{D, F\},\{E, F\}\}$

Directed
$V=\{a, b, c, d, e, f\}$
$E=\{(a, b),(a, c),(b, d),(c, d)$,
(d,c),(d,e),(d,f),(f,c)\}

Graph Terminology

- Size? Edges or vertices?
- Usually take size to be $\mathrm{n}=|\mathrm{V}|$ (\# of vertices)
- But the runtime of graph algorithms often depend on the number of edges, $|E|$
- Relationships between $|\mathrm{V}|$ and $|\mathrm{E}|$?

Undirected Graphs: adjacency, degree

- If $\{u, v\}$ is an edge, then u and v are neighbors (also: u is adjacent to v)
- degree of $v=$ number of neighbors of v

Fact:

$\sum_{\substack{v \in V \\(W h y ?)}} \operatorname{deg}(v)=2|E|$

Directed Graphs: adjacency, degree

- If (u, v) is an edge, then v is a successor of u and u is a predecessor of v
- Out-degree of $v=$ number of successors of v
- In-degree of $v=$ number of predecessors of v

Undirected Graphs: paths, connectivity

- A path is a list of unique vertices joined by edges. - For example, [a, c, d, e] is a path from a to e.
- A subgraph is connected if every pair of vertices in the subgraph has a path between them.

Subgraph	Connected?
$\{A, B, C, D\}$	Yes
$\{E, F\}$	Yes
$\{C, D, E\}$	No
$\{A, B, C, D, E, F\}$	No

Not a connected graph.

Undirected Graphs: components

(Connected) component: a maximal connected subgraph.
For example, this graph has 3 connected components:

Undirected Graphs: (mathematical) tree

Tree: connected acyclic graph (no cycles)
Example. Which component is a tree?

Question: for a tree, what is the relationship between $\mathrm{m}=$ \#edges and $\mathrm{n}=$ \#vertices?

$$
m=n-1
$$

Directed Graphs: paths, connectivity

- A directed path is a list of unique vertices joined by directed edges.
- For example, [a, c, d, f] is a directed path from a to f. We say f is reachable from a.
- A subgraph is strongly connected if for every pair (u, v) of its vertices, v is reachable from u and u is reachable from v.

- Strongly-connected component: maximal strongly connected subgraph

Strongly connected components
$\{a\}$
$\{b\}$
$\{c, d, f\}$
$\{e\}$

Viewing a graph as a data structure

- Each vertex associated with a name (key)
, Examples:
- City name
- IP address
- People in a social network
- An edge (undirected/directed) represents a link between keys
- Graphs are flexible: edges/nodes can have weights, capacities, or other attributes

There are several alternatives for representing edges of a graph

- Edge list
- A collection of vertices and a collection of edges

- Adjacency matrix
- Each key is associated with an index from 0, ..., (n-1)
- Map from keys to ints?
- Edges denoted by 2D array (\#V x \#V) of 0's and 1's
- Adjacency list
- Collection of vertices
- Map from keys to Vertex objects?
- Each Vertex stores a List of adjacent vertices

Implementation tradeoffs

Adjacency list

Adjacency matrix
$\mathrm{A} \rightarrow 0$
$B \rightarrow 1$
$\mathrm{C} \rightarrow 2$
D $\rightarrow 3$
$\mathrm{E} \rightarrow 4$
$\mathrm{F} \rightarrow 5$

	0	1	2	3	4	5
0	0	1	1	0	0	0
1	1	0	1	1	0	0
2	1	1	0	1	0	0
3	0	1	1	0	1	1
4	0	0	0	1	0	1
5	0	0	0	1	1	0

- Running time of degree(v)?
- Running time of deleteEdge(u,v)?
- Space efficiency?

GraphSurfing assignment

- M1: Implement AdjacencyListGraph $<\mathrm{T}>$ and AdjacencyMatrixGraph<T>
- both extend the given ADT, Graph $<T>$.
- M2: Write methods
- stronglyConnectedComponent(v)
- shortestPath(v)
and use them to go WikiSurfing!

Sample Graph Problems

To discuss algorithms, take MA/CSSE473 or MA477

Weighted Shortest Path

- What's the cost of the shortest path from A to each of the other nodes in the graph?

Minimum Spanning Tree

- Spanning tree: a connected acyclic subgraph that includes all of the graph's vertices
- Minimum spanning tree of a weighted, connected graph: a spanning tree of minimum total weight
Example:

Traveling Salesman Problem (TSP)

- n cities, weights are travel distance
- Must visit all cities (starting \& ending at same place) with shortest possible distance

Tour	Length	
	$1=2+8+1+7=18$	
$a \rightarrow$--> b d $-\ggg>$	$l=2+3+1+5=11$	optimal
$a \rightarrow \gg b$ c-> ${ }^{\text {a }}$	$1=5+8+3+7=23$	
	$I=5+1+3+2=11$	optimal
	$1=7+3+8+5=23$	
$a \rightarrow>d \rightarrow c \rightarrow b$	$1=7+1+8+2=18$	

- Exhaustive search: how many routes?
- $(n-1)!/ 2 \in \Theta((n-1)!)$

Traveling Salesman Problem

- Online source for all things TSP:
- http://www.math.uwaterloo.ca/tsp/

Example graphs for project

