CSSE 230 Days 20-21

Priority Queues
Heaps
Heapsort

After this lesson, you should be able to ...

.. apply the binary heap insertion and deletion algorithms by hand
.. implement the binary heap insertion and deletion algorithms

.. explain why you can build a heap in O(n) time

.. implement heapsort

Exam 2: next Weds evening

» Format same as Exam 1
- One 8.5x11 sheet of paper (one side) for written part
- Same resources as before for programming part

» Topics: weeks 1-7
- Through day 21, HW7, and EditorTrees milestone 3
- Especially

- Binary trees, including BST, AVL, indexed (EditorTrees),
Red-black

- Traversals and iterators, size vs. height, rank

- Recursive methods, including ones that should only touch
each node once (like sum of heights from HW5 and
isHeightBalanced)

- Hash tables
- Heaps

» Practice exam posted in Moodle

Announcements/Reminders

Today and tomorrow you will have some
worktime.

heaps/heapsort individually in class
Editor Trees with team out of class
Or switch?

EditorTrees M2 feedback coming soon...

Priority Queue operations

» Each element in the PQ has an associated
priority, which is a value from a comparable
type (in our examples, an integer).

» Operations (may have other names):

> insert(item, priority) (also called add,offer)

> findMin()

° deIeteMin() (also called remove or poll)
> isEmpty() ...

Priority queue implementation

» How could we implement it using data
structures that we already know about?
> Array?

- Sorted array?
> AVL?

» One efficient approach uses a binary heap
- A somewhat-sorted complete binary tree

» Questions we'll ask

- How can we efficiently represent a complete binary
tree?

- Can we add and remove items efficiently without
destroying the "heapness” of the structure?

Algorithms for insertion and
deleteMin

Figure 21.1
A complete binary tree and its array representation
Notice the y .,
lack of complete
lici 1S not a
spiiel completely
pointers in standard
the array term
m 0 Array: How to find the children
8 9 10 or the parent of a node?
Al\B|C|D\E|F|G|H|IT|J I
O 1 2 3 4 5 6 7 8 9 10 11 12 13

One "wasted"
array position (0)

Data Structures & Problem Solving using JAVA/2E ~ Mark Allen Weiss ~ © 2002 Addison Wesley

The (min) heap-order property: 2-3
every node’s value is < its childrens’ values

P A Binary (min) Heap 1s a
complete Binary Tree (using
the array implementation, as

on the previous slide) that
has the heap-order property

P < X everywhere.

In a binary heap, where do we find
*The smallest element?

«2nd smallest?
X «3rd smallest?

Data Structures & Problem Solving using JAVA/2E ~ Mark Allen Weiss ~ © 2002 Addison Wesley

Insert and DeleteMin

» Idea of each:

1. Get the structure right first
- Insert at end (bottom of tree)

- Move the last element to the root after deleting the
root

2. Restore the heap-order property by percolating
(swapping an element/child pair)
* Insert by percolating up: swap with parent

- DeleteMin by percolating down: swap with child with min
value

Nice demo:

Figure 21.7
Attempt to insert 14, creating the hole and bubbling the hole up

Insertion algorithm

Recall that the
actual data
movement is

done by array
(@) manipulation (b)

Create a "hole" where 14 can be inserted.
Percolate up!

Figure 21.8

The remaining two steps required to insert 14 in the original heap shown in
Figure 21.7

Insertion Algorithm continued

14 14 @
@ g
6929 @ ()
(b)

Analysis of
insertion ...

4-5

Code for Insertion

1 J** figure 21.9
2 * Adds an item to this PriorityQueue. The add method
3 * @param x any object.

4 * @return true.

5 */

6 public boolean add(AnyType x)

7 {

8 if(currentSize + 1 == array.length)

9 doubTleArray();

10

11 // Percolate up

12 int hole = ++currentSize;

13 array[0] = x;

14

15 for(; compare(x, array[hole / 2]) < 0; hole /=2)

16 array[hole] = array[hole / 2];

17 array[hole] = x;

18

19 return true;

20 }

Your turn: Insert into an initially empty heap:
64815327

DeleteMin algorithm

The min 1s at the root. Delete 1t, then use the percolateDown
algorithm to find the correct place for its replacement.

We must decide which child to promote, to make room for 31.

Figure 21.10 Creation of the hole at the root

Data Structures & Problem Solving using JAVA/2E ~ Mark Allen Weiss ~ © 2002 Addison Wesley

Figure 21.11

The next two steps in the deleteMin operation

DeleteMin Slide 2

A @
69 3 6) @0

@2) 31

Figure 21.12

The last two steps in the deleteMin operation

DeleteMin Slide 3

. @
6 glcle

()G 31

public Comparable deleteMin() 6-7

{

}

Comparable minltem = f£findMin()’
array[1] = array[currentiize--];
percolateDowni 1);

return minltem; . .
Compare node to its children,

private void percolateDowni(int hole) IIlOViIlg root down and

{

| | promoting the smaller child until
int child;)
Comparable tmp = array[hole]; proper place 1s found.

for(; hole # 2 <= currentSize; hole = child)
{
child = hole * 2;
if({ child '= currentiize &£&
array[child + 1].compareTo(array[child]) < 0)
child++;
if({ array[child] .compareTo(tmp) < 0)
array[hole] = array[child] ’
lee We’ll re-use
break; percolateDown

; in HeapSort

array[hole] = tmp;

Insert and DeleteMin
commonalities

» Idea of each:

1. Get the structure right first
- Insert at end (bottom of tree)

- Move the last element to the root after deleting the
root

2. Restore the heap-order property by percolating
(swapping an element/child pair)

* Insert by percolating up: swap with parent

- Delete by percolating down: swap with child with min value

Summary: Implementing a Priority
Queue as a binary heap

» Worst case times:
o findMin: O(1)
> insert: amortized O(log n), worst O(n)
- deleteMin O(log n)

» big-oh times for insert/delete are the same
as in the balanced BST implementation, but ..
- Heap operations are much simpler to write.

- A heap doesn’t require additional space for pointers
or balance codes.

You may leave early if you finish
the heap implementation.
Otherwise aim to finish before
next class

Next time: heapsort

Using data structures for sorting

» Start with an empty structure.

» Insert each item from the unsorted array into
the data structure

» Copy the items from the data structure, one
at a time, back into the array, overwriting the
unsorted data.

» (draw this now)

» What data structures work in this scheme?
- BST? Hash set? Priority queue?

» What is the runtime?

Using a Heap for sorting

Start with empty heap
Insert each array element into heap

Repeatedly do deleteMin, copying elements back
Into array.

One alternative for space efficiency:

- We could save space by doing the whole sort in place,
using a "maxHeap" (i.e. a heap where the maximum
element is at the root instead of the minimum)

v VvV Vv

v

o

Analysis?
- Next slide ...

v

Analysis of simple heapsort
» Add the elements to the heap

- Repeatedly call insert O(n log n)
» Remove the elements and place into the array
- Repeatedly call deleteMin O(n log n)
» Total O(n log n)

» Can we do better for the insertion part?

> Yes, insert all the items in arbitrary order into the
heap’s internal array and then use BuildHeap (next)

Analysis of simple heapsort

» Use Stirling's

approximation: [nn!=nlnn-n4 O(In(n))

http://en.wikipedia.org

/wiki/Stirling%27s_appr
oXimation

10°
10° +
104+
10° ¢
10°
10! F

10°

10-1 L 1 1 L _
10° 10* 107 10° 104 10°

BuildHeap takes a complete tree that 1s not a heap and
exchanges elements to get 1t into heap form

At each stage 1t takes a root plus two heaps and "percolates
down" the root to restore "heapness" to the entire subtree

* Establash heap order properiyv from an arbatrary
* grrangement of 1tems. Runs in linear taime
private vold buildHeap ()
{
for({ int i = currentSize / 2; 1 > 0; i--)

percolateDown(1)

Why this starting point?

Figure 21.17 Implementation of the linear-time buildHeap method

private voild buildHeap |)
{

for(int i = currentSize / 2; 1 > 0; i--)
percolateDown(1)

Figure 21.18

(a) After percolateDown(6);
(b) after percolateDown(5)

Figure 21.19

(a) After percolateDown(4);
(b) after percolateDown(3)

Figure 21.20
(a)After percolateDown(2);
(b) after percolateDown(1) and buildHeap terminates

Analysis of BuildHeap

» Find a summation that represents the
maximum number of comparisons required
to rearrange an array of N=2H+1-1 elements
into a heap

» Can you find a summation and its value?

» In HWS8, you’ll do this.

10

Analysis of BuildHeap

» Find a summation that represents the
maximum number of comparisons required

to rearrange an array of N=2H+1-1 elements
into a heap

H
. H-k
- The summation is > k2" .
k=0

and the sumis N-H -1

« HWS8: prove this formula by induction
« Can do it strictly by the numbers
« Simpler?: Do it based on the trees.

11-end

Analysis of better heapsort

» Add the elements to the heap
—Insertnelementsinto-heap (call buildHeap, faster)

» Remove the elements and place into the array
- Repeatedly call deleteMin

» Total runtime?
> 0(n log n)
- We should expect no faster to sort! Why not?

Worktime now. Aim to finish heapsort by next
class, even if not officially due yet.

