

CSSE 230 Day 13
 AVL trees and rotations

This week, you should be able to... ...perform rotations on height-balanced trees, on paper and in code
... write a rotate() method
... search for the kth item in-order using rank

Announcements

- Term project partners posted
- Sit with partner(s) now.
- Read the spec before tomorrow and start planning.
- Test 2a next class

Test 2a next class:

Recursive tree methods all follow this format

- Consider an arbitrary method named foo()

foo()

If base case, return the appropriate value

- 1. Compute a value for the node
- 2. Call left.foo() and right.foo()
- 3. Combine the results and return them
- This is $\mathrm{O}(\mathrm{n})$ if the computation on the node is constant-time
- But when searching in a BST, you only need to call left.foo() or right.foo(), so it is O(height)
- Style: pass info through parameters and return values.
- Not extra instance variables (fields).

If you submitted HW4 TreePractice, you should have received a solution in your repo.

Summary: for fast tree operations, we must keep tree somewhat balanced in $\mathrm{O}(\log n)$ time

- Total time to do insert/delete =
- Time to find the correct place to insert $=\mathbf{O}$ (height)
- + time to detect an imbalance
- + time to correct the imbalance
- If don't bother with balance:
- If try to keep perfect balance:
- Height is $\mathrm{O}(\log n)$ BUT
- But maintaining perfect balance is $\mathrm{O}(\mathrm{n})$

- Height-balanced trees are still $\mathrm{O}(\log n)$
- For T with height $h, N(T) \leq \operatorname{Fib}(h+3)-1$
- So $\mathrm{H}<1.44 \log (\mathrm{~N}+2)-1.328$ *
- AVL (Adelson-Velskii and Landis) trees maintain height-balance using rotations

- Are rotations $O(\log n)$? We'll see...

AVL nodes are just like BinaryNodes, Q2 but also have an extra "balance code"

or

or

Different representations for / = \backslash :

- Just two bits in a low-level language
- Enum in a higher-level language

Using balance codes makes AVL Tree Q3 rebalancing efficient: $\mathrm{O}(\log \mathrm{n})$

- Assume tree is height-balanced before insertion
- Insert as usual for a BST
- Move up from the newly inserted node to the lowest "unbalanced" node (if any)

- Use the balance code to detect unbalance how?
-Why is this $\mathrm{O}(\log \mathrm{n})$?
- We move up the tree to the root in worst case, NOT recursing into subtrees to calculate heights
- Do an appropriate rotation (see next slides) to balance the subtree rooted at this unbalanced node

Four types of rotations are required to remove different cases of tree imbalances

- For example, a single left rotation:

We rotate by pulling the "too tall" sub-tree up and pushing the "too short" sub-tree down

- Two basic cases

- "Seesaw" case:
- Too-tall sub-tree is on the outside
- So tip the seesaw so it's level

- "Suck in your gut" case:
- Too-tall sub-tree is in the middle
- Pull its root up a level

Single Left Rotation

Diagrams are from Data Structures by E.M. Reingold and W.J. Hansen

Double Left Rotation Q6-7

Weiss calls this "right-left double rotation"

Your turn - work with a partner

- Write the method:
- static BalancedBinaryNode singleRotateLeft (BalancedBinaryNode parent, /* A */ BalancedBinaryNode child /* B */) \{
\}
- Returns a reference to the new root of this subtree.
- Don't forget to set the balanceCode fields of the nodes.

More practice- (sometime after class)

- Write the method:
- BalancedBinaryNode doubleRotateRight (

BalancedBinaryNode parent,
BalancedBinaryNode child,
BalancedBinaryNode grandChild
A */
/* C */
/* B */) \{
\}

- Returns a reference to the new root of this subtree.
- Rotation is mirror image of double rotation from an earlier slide
- If you have to rotate after insertion, you can stop moving up the tree:
- Both kinds of rotation leave height the same as before the insertion!
- Is insertion plus rotation cost really $\mathrm{O}(\log \mathrm{N})$?

Insertion/deletion
in AVL Tree:
$O(\log n)$
Find the imbalance point (if any):
O(log n)
Single or double rotation:
$\mathrm{O}(1)$
(looking ahead) for deletion, may have to do $O(\log N)$ rotations
Total work:

Term Project: EditorTrees

Like BST, except:

1. Keep height-balanced
2. Insertion/deletion by index, not by comparing elements.

So not sorted

Examples:

- EditorTree et = new EditorTree()
- et.add('a') / / append to end
- et.add('b’) // same
- et.add('c') // same. Rebalance!
- et.add('d', 2) // where does it go?
- et.add('e’)
- et.add('f', 3)
- Notice the tree is height-balanced (so height $=\mathrm{O}(\log n)$), but not a BST

To find index quickly, add a rank field to BinaryNode

- Gives the in-order position of this node within its own subtree
- i.e., the size of its left subtree
- How would we do get(pos)?
- Insert and de1ete start similarly

With your EditorTrees team

Milestone 1 due in 1 week.
Start soon!
Read the specification and check out the starting code

