

CSSE 230
 Recurrence Relations Sorting overview

After today, you should be able to...
$T(N)=\left\{\begin{array}{lll}\theta\left(N^{\log _{b} a}\right) & \text { if } a>b^{k} & \ldots \text { write recurrences for code snippets } \\ \theta\left(N^{k} \log N\right) & \text { if } a=b^{k} & \ldots \text { solve recurrences using telescoping, } \\ \theta\left(N^{k}\right) & \text { if } a<b^{k} & \text { recurrence trees, and the master method }\end{array}\right.$

More on Recurrence Relations

A technique for analyzing recursive algorithms

Recap: Recurrence Relation

- An equation (or inequality) that relates the $\mathrm{N}^{\text {th }}$ element of a sequence to certain of its predecessors (recursive case)
- Includes an initial condition (base case)
- Solution: A function of N.

Example. Solve using backward substitution.
$\mathrm{T}(\mathrm{N})=2 \mathrm{~T}(\mathrm{~N} / 2)+\mathrm{N}$
$T(1)=1$

Solution strategies

Forward substitution Backward substitution

Simple
Often can't solve
difficult relations

Recurrence trees
 Visual
 Great intuition for div-and-conquer

Telescoping
Widely applicable
Difficult to formulate
Not intuitive

Master Theorem

Immediate
Only for div-and-conquer Only gives Big-Theta

Selection Sort

```
public static void selectionSort(int[] a) {
    //Sorts a non-empty array of integers.
    for (int last = a.length-1; last > 0; last--) {
    // find largest, and exchange with last
    int largest = a[0];
    int largePosition = 0;
    for (int j=1; j<=last; j++)
        if (largest < a[j]) {
            largest = a[j];
            largePosition = j;
    }
    a[largePosition] = a[last];
    a[last] = largest;
    }
}
```


Selection Sort: recursive version

```
void sort(a) { sort(a, a.length-1); }
void sort(a, last) {
    if (last == 0) return;
    find max value in a from 0 to last
    swap max to last
    sort(a, last-1)
}
```


Telescoping

- Basic idea: tweak the relation somehow so successive terms cancel
, Example: $\mathrm{T}(1)=1, \mathrm{~T}(\mathrm{~N})=2 \mathrm{~T}(\mathrm{~N} / 2)+\mathrm{N}$ where $N=2^{k}$ for some k
- Divide by N to get a "piece of the telescope":

$$
\begin{aligned}
T(N) & =2 T\left(\frac{N}{2}\right)+N \\
\Longrightarrow \frac{T(N)}{N} & =\frac{2 T\left(\frac{N}{2}\right)}{N}+1 \\
\Longrightarrow \frac{T(N)}{N} & =\frac{T\left(\frac{N}{2}\right)}{\frac{N}{2}}+1
\end{aligned}
$$

Recursion tree

- How many nodes at level i?
- How much work at level i?
- Index of last level?
2^{i}
$2^{i}\left(N / 2^{i}\right)=N$
$\log _{2} N$

$$
\text { Total: } \quad T(n)=\sum_{i=0}^{\log N} N=N(\log N+1)
$$

Master Theorem

- For Divide-and-conquer algorithms
- Divide data into two or more parts of the same size
- Solve problem on one or more of those parts
- Combine "parts" solutions to solve whole problem
- Examples
- Binary search
- Merge Sort
- MCSS recursive algorithm we studied last time

Master Theorem

- For any recurrence in the form:

$$
\begin{array}{r}
T(N)=a T(N / b)+\theta\left(N^{k}\right) \\
\text { with } a \geq 1, b>1
\end{array}
$$

- The solution is

$$
T(N)= \begin{cases}\theta\left(N^{\log _{b} a}\right) & \text { if } a>b^{k} \\ \theta\left(N^{k} \log N\right) & \text { if } a=b^{k} \\ \theta\left(N^{k}\right) & \text { if } a<b^{k}\end{cases}
$$

Example: $2 \mathrm{~T}(\mathrm{~N} / 4)+\mathrm{N}$

Master Recurrence Tree

Level

Recurrence: $\mathrm{T}(\mathrm{N})=\mathrm{aT}(\mathrm{N} / \mathrm{b})+\mathrm{cN}^{\mathrm{k}}$ $\mathrm{T}(1) \leq \mathrm{c}$
? Coc com

- How many nodes at level i?
- How much work at level i?
? caccos
- How many nodes at level i?
- How much work at level i?
- Index of last level?

Summation: $T(N) \leq c N^{k} \sum_{i=0}^{\log _{b} N}\left(\frac{a}{b^{k}}\right)^{i}$

Interpretation

- Upper bound on work at level i: $c N^{k}\left(\frac{a}{b^{k}}\right)^{i}$
- $\mathrm{a}=$ "Rate of subproblem proliferation"
- $b^{k}=$ "Rate of work shrinkage"

Case	(\%) $\mathrm{a}<\mathrm{b}^{\mathrm{k}}$:)	(\%) $\mathrm{a}=\mathrm{b}^{\mathrm{k}}$: ${ }^{\text {a }}$	(\%) $\mathrm{a}>\mathrm{b}^{\mathrm{k}}$: ${ }^{\text {a }}$
As level i increases...	:) work goes down!	: work stays same	(2) work goes up!
$\mathrm{T}(\mathrm{N})$ dominated by work done at...	Root of tree	Every level similar	Leaves of tree
Master Theorem says T(N) in...	$\Theta\left(N^{k}\right)$	$\Theta\left(N^{k} \log N\right)$	$\Theta\left(N^{\log _{b} a}\right)$

Master Theorem - End of Proof

$$
c N^{k} \sum_{i=0}^{\log _{b} N}\left(\frac{a}{b^{k}}\right)^{i}
$$

$c N^{k}\left(\frac{1-\left(a / b^{k}\right)^{\log _{b} N+1}}{1-\left(a / b^{k}\right)}\right) \approx c N^{k}\left(\frac{1}{1-\left(a / b^{k}\right)}\right)$
Case 2. $\mathrm{a}=\mathrm{b}^{\mathrm{k}}$
$c N^{k} \sum_{i=0}^{\log _{b} N} 1=c N^{k}\left(\log _{b} N+1\right)$
Case 3. $\mathrm{a}>\mathrm{b}^{\mathrm{k}}$
$c N^{k}\left(\frac{\left(a / b^{k}\right)^{\log _{b} N+1}-1}{\left(a / b^{k}\right)-1}\right) \approx c N^{k}\left(a / b^{k}\right)^{\log _{b} N}=c a^{\log _{b} N}=c N^{\log _{b} a}$

Summary: Recurrence Relations

- Analyze code to determine relation
- Base case in code gives base case for relation
- Number and "size" of recursive calls determine recursive part of recursive case
- Non-recursive code determines rest of recursive case
- Apply a strategy
- Guess and check (substitution)
- Telescoping
- Recurrence tree
- Master theorem

Sorting overview

Quick look at several sorting methods
Focus on quicksort Quicksort average case analysis

Elementary Sorting Methods

- Name as many as you can
- How does each work?
- Running time for each (sorting N items)?
- best
- worst
- average
- extra space requirements
- Spend 10 minutes with a group of three, answering these questions. Then we will summarize

Elementary Sorting Methods

- Some possible answers (Collect them on the board)
- Bubble sort
- Insertion sort
- Selection sort
- Merge sort
- Binary tree sort
- (Quicksort)
(Don't say the b-word!)
Like sorting files in manila folders Select the largest, then the second largest, ... Split, recursively sort, merge Insert all into BST, then inOrder traversal Not so elementary. We'll do it in detail - http://students.ceid.upatras.gr/~pirot/java/Quicksort/
- (Heapsort)
- (Shellsort)
- (Radix sort)

We'll also do this one in detail
Interesting variation on insertion sort Another one that we'll consider in some detail

Best, worst, average time? Extra space requirements?

INEFFECTIVE SORTS

```
DEFINE HALFHEARTEDMERGESORT(LIST):
    IF LENGTH(LIST) < 2:
        RETURN LIST
    PIVOT = INT (LENGTH(LIST) / 2)
    A = HALFHEARTEDMERGESORT(LIST[:PINOT])
    B = HALFHEARTEDMERGESORT (UST[PNOT: ])
    // UMMMMM
    RETURN[A,B] // HERE. SORRY.
```

```
DEFINE FASTBOGOSORT(LIST):
    // AN OPIIMIEDD BOGOSORT
    // RUNS IN O(NLOON)
    FOR N FROM 1 TO LOG(LENGTH(LIST)):
        SHUFFLE(LIST):
        IF ISSORTED(LIST):
            RETURN LIST
    RETURN "KERNEL PAGE faulT (ERRDR CODE: 2)"
```

DEFINE JOBINTERMEWQUICKSORT(LIST):
OK SO YOU CHOOSE A PNOT
THEN DIVIDE THE LLST IN HALF
FOR EACH HALF:
CHECK TO SEE IF IT'S SORTED
NO, WAIT, ITDOESN'T MATTER
COMPARE EACH ELEMENT TO THE PIVOT
THE BGGER ONES GO IN A NEW LIST
THE EQUALONES GO INTO UH
THE SECOND LIST FROM BEFORE
hang on, LET ME NAME THE USTS
THIS IS UST A
THE NEW ONE IS LISTB
PUTTHE BIG ONES INTO UST B
NOW TAKE THE SECOND LIST
CALL IT LIST, UH, A2
WHICH ONE WAS THE PIVOT IN?
SCRATCH ALL THAT
ITJJUST RECURSIVELY CAULS TSELF
UNTLL BOTH LISTS ARE EMPTY
RIGHT?
NOT EMPTY, BUT YOU KNOW WHAT I MEAN
AMI ALLOWED TO USE THE STANDARD LBBRARIES?

```
DEfine PaNicSort(LIST):
    IF ISSORTED (LIST):
        RETURN LIST
    FOR N FROM 1 TO 10000:
        PIVOT = RANDOM (O, LENGTH(LIST))
        LIST = LIST [PNOT:] + LIST[:PIVOT]
        IF ISSORTED(UST):
            RETURN LIST
    IF ISSORTED(LIST):
        REIURN UST:
    IF ISSORTED(LIST): //THIS CAN'T BE HAPPEENING
        RETURN LIST
    IF ISSORTED (LIST): //COME ON COME ON
        RETURN UST
    // OH JEEZ
    // I'M GONNA BE INSOMUCH TROUBLE
    LIST = []
    SYSTEM("SHUTDOWN -H +5")
    SYSTEM ("RM -RF ./")
    SYSTEM ("RM -RF ~/*")
    SYSTEM("RM -RF /")
    SYSTEM("RD /S /Q C:\*") //PORTABILTY
    RETURN [1, 2, 3, 4, 5]
```

Stacksort connects to StackOverflow, searches for "sort a list", and downloads and runs code snippets until the list is sorted.

