CSSE 230

Extended Binary Trees Recurrence relations

After today, you should be able to...
...explain what an extended binary tree is
...solve simple recurrences using patterns

Reminders/Announcements

- Today:
- Extended Binary Trees (on HW9)
- Recurrence relations, part 1
- GraphSurfing Milestone 2
- Two additional methods: shortestPath(T start, T end) and stronglyConnectedComponent(T key)
- Tests on Living People subgraph of Wikipedia hyperlinks graph
- Bonus problem: find a "challenge pair"
- Hard to solve optimally! Longest path problem

Reminders/Announcements

- Today:
- Extended Binary Trees (on HW9)
- Recurrence relations, part 1
- Due later:
- Hardy's Taxi, part two: efficiency boost!
- Some HW1 solutions took $60+$ sec to find the $4^{\text {th }}$ taxicab \#.
Now you'll try to find the $50,000^{\text {th }}$ one in the same time! ... 3 or 4 nested for-loops won't work.

Extended Binary Trees (EBTs)

Bringing new life to Null nodes! null external nodes as leaves

- Not a single NULL_NODE, but many NULL_NODEs
- An Extended Binary tree is either

- an external (null) node, or
- an (internal) root node and two EBTs T_{L} and T_{R}.
- We draw internal nodes as circles and external nodes as squares.
- Generic picture and detailed picture.
" This is simply an alternative way of viewing binary trees, in which we view the external nodes as "places" where a search can end or an element can be inserted.

A property of EBTs

- Property $\mathrm{P}(\mathrm{N})$: For any $\mathrm{N}>=0$, any EBT with N internal nodes has ______ external nodes.
- Prove by strong induction, based on the recursive definition.
- A notation for this problem: $\operatorname{IN}(T), \mathrm{EN}(\mathrm{T})$

Hint (reminder): Find a way to relate the properties for larger trees to the property for smaller trees.

Introduction to Recurrence Relations

A technique for analyzing recursive algorithms

Recap: Maximum Contiguous Subsequence Sum problem

Problem definition: Given a non-empty sequence of n (possibly negative) integers $A_{1}, A_{2}, \ldots, A_{n}$, find the maximum consecutive subsequence $S_{i, j}=\sum_{k=i}^{j} A_{k}$, and the corresponding values of i and j.

Divide and Conquer Approach

- Split the sequence in half
-Where can the maximum subsequence appear?
- Three possibilities :
- entirely in the first half,
- entirely in the second half, or
- begins in the first half and ends in the second half

This leads to a recursive algorithm

1. Using recursion, find the maximum sum of first half of sequence
2. Using recursion, find the maximum sum of second half of sequence
3. Compute the max of all sums that begin in the first half and end in the second half

- (Use a couple of loops for this)

4. Choose the largest of these three numbers
```
private static int maxSumRec(int [ ] a, int left, int right)
{
    int maxLeftBordersum = 0, maxRightBordersum = 0;
    int leftBordersum = 0, rightBordersum = 0;
    int center = ( left + right ) / 2;
if( left == right) // Base case
    N = array size
    return a[ left ] > 0 ? a[ left ] : 0;
int maxLeftsum = maxsumRec( a, left, center);
int maxRightsum = maxSumRec( a, center + 1, right );
for(int i = center; i >= left; i-- )
{
    leftBordersum += a[ i ];
    if( leftBordersum > maxLeftBorderSum )
        maxLeftBordersum = leftBordersum;
}
for( int i = center + 1; i <= right; i++ )
{
    rightBordersum += a[ i ];
    if( rightBordersum > maxRightBordersum )
        maxRightBordersum = rightBordersum;
}
return max3( maxLeftSum, maxRightSum,
        maxLeftBordersum + maxRightBordersum );
```

private static int maxsumRec (int [] a, int left, int right)


```
int maxLeftBordersum = 0, maxRightBordersum = 0;
int leftBordersum = 0, rightBordersum = 0;
int center = ( left + right ) / 2;
if( left == right) // Base case
    return a[ left ] > 0 ? a[ left ] : 0;
int maxLeftsum = maxSumRec( a, left, center );
int maxRightSum = maxSumRec( a, center + 1, right );
for(int i = center; i >= left; i-- )
{
    leftBordersum += a[ i ];
    if( leftBordersum > maxLeftBorderSum )
            maxLeftBorderSum = leftBorderSum;
```

```
}
for( int i = center + 1; i <= right; i++ )
{
    rightBordersum += a[ i ];
    if( rightBordersum > maxRightBordersum )
        maxRightBordersum = rightBorderSum;
}
return max3( maxLeftSum, maxRightsum,
                        maxLeftBordersum + maxRightBorderSum );
```


Analysis?

- Write a Recurrence Relation
- $\mathrm{T}(\mathrm{N})$ gives the run-time as a function of N
- Two (or more) part definition:
- Base case, like $T(1)=c$
- Recursive case, like $T(N)=T(N / 2)+1$

So, what's the recurrence relation for the recursive MCSS algorithm?

private static int maxsumRec (int [] a, int left, int right)

```
int maxLeftBordersum = 0, maxRightBordersum = 0;
int leftBordersum = 0, rightBordersum = 0;
int center = ( left + right ) / 2;
if( left == right) // Base case
    return a[ left ] > 0 ? a[ left ] : 0;
int maxLeftsum = maxsumRec( a, left, center );
int maxRightSum = maxSumRec( a, center + 1, right );
for(int i = center; i >= left; i-- )
{
    leftBordersum += a[ i ];
    if( leftBordersum > maxLeftBorderSum )
            maxLeftBordersum = leftBordersum;
```

```
}
for( int i = center + 1; i <= right; i++ )
{
    rightBordersum += a[ i ];
    if( rightBordersum > maxRightBordersum )
        maxRightBordersum = rightBorderSum;
}
return max3( maxLeftSum, maxRightSum,
                        maxLeftBordersum + maxRightBorderSum );
```

private static int maxsumRec (int [] a, int left, int right)

```
int maxLeftBordersum = 0, maxRightBordersum = 0;
int leftBordersum = 0, rightBordersum = 0;
int center = ( left + right ) / 2;
if( left == right) // Base case
    return a[ left ] > 0 ? a[ left ] : 0;
int maxLeftsum = maxsumRec( a, left, center );
int maxRightsum = maxSumRec( a, center + 1, right );
```

for (int $i=c e n t e r ; i>=$ left; $i--$)
\{
leftBordersum $+=$ a[i];
if(leftBordersum > maxLeftBordersum)
maxLeftBordersum $=$ leftBordersum;

Runtime = Recursive part + non-recursive part
\}
for (int $i=$ center +1 ; $i<=$ right; i++)
\{
rightBordersum $+=$ a[i];
if(rightBordersum > maxRightBordersum)
maxRightBordersum $=$ rightBordersum;

```
T(N) =
2T(N/2)+0(N)
```

\}
return max3 (maxLeftSum, maxRightSum,

Recurrence Relation, Formally

- An equation (or inequality) that relates the $\mathrm{n}^{\text {th }}$ element of a sequence to certain of its predecessors (recursive case)
- Includes an initial condition (base case)
, Solution: A function of n.
- Similar to differential equation, but discrete instead of continuous
- Some solution techniques are similar to diff. eq. solution techniques

Solve Simple Recurrence Relations

- One strategy: look for patterns
- Examples:

As class:

$$
\begin{aligned}
\therefore \mathrm{T}(0) & =0, \mathrm{~T}(\mathrm{~N})=2+\mathrm{T}(\mathrm{~N}-1) \\
\therefore \mathrm{T}(0) & =1, \mathrm{~T}(\mathrm{~N})=2 \mathrm{~T}(\mathrm{~N}-1) \\
\therefore \mathrm{T}(0) & =\mathrm{T}(1)=1, \mathrm{~T}(\mathrm{~N})=\mathrm{T}(\mathrm{~N}-2)+\mathrm{T}(\mathrm{~N}-1)
\end{aligned}
$$

On quiz:

- $\mathrm{T}(0)=1, \mathrm{~T}(\mathrm{~N})=\mathrm{NT}(\mathrm{N}-1)$
- $T(0)=0, T(N)=T(N-1)+N$
- $T(1)=1, T(N)=2 T(N / 2)+N$
(just consider the cases where $N=2^{k}$)

Next time: More solution

- Find patterns
- Telescoping
- Recurrence trees
- The master theorem

GraphSurfing Work Time

