

CSSE 230 Days 20-21

Priority Queues Heaps Heapsort

After this lesson, you should be able to ...

- ... apply the binary heap insertion and deletion algorithms by hand
- ... implement the binary heap insertion and deletion algorithms
- ... explain why you can build a heap in O(n) time
- ... implement heapsort

Exam 2: next Weds evening

- Format same as Exam 1
 - One 8.5x11 sheet of paper (one side) for written part
 - Same resources as before for programming part
- ▶ Topics: weeks 1–7
 - Through day 21, HW7, and EditorTrees milestone 3
 - Especially
 - Binary trees, including BST, AVL, indexed (EditorTrees), Red-black
 - Traversals and iterators, size vs. height, rank
 - Recursive methods, including ones that should only touch each node once (like sum of heights from HW5 and isHeightBalanced)
 - Hash tables
 - Heaps
- Practice exam posted in Moodle

Announcements/Reminders

Today and tomorrow you will have some worktime.

heaps/heapsort individually in class Editor Trees with team out of class Or switch?

EditorTrees M2 feedback coming soon...

Priority Queue ADT

Basic operations
Implementation options

Priority Queue operations

- Each element in the PQ has an associated priority, which is a value from a comparable type (in our examples, an integer).
- Operations (may have other names):
 - insert(item, priority) (also called add,offer)
 - findMin()
 - deleteMin()
 (also called remove or poll)
 - isEmpty() ...

Priority queue implementation

- How could we implement it using data structures that we already know about?
 - Array?
 - Sorted array?
 - AVL?
- One efficient approach uses a binary heap
 - A somewhat-sorted complete binary tree
- Questions we'll ask:
 - How can we efficiently represent a complete binary tree?
 - Can we add and remove items efficiently without destroying the "heapness" of the structure?

Binary Heap

An efficient implementation of the PriorityQueue ADT

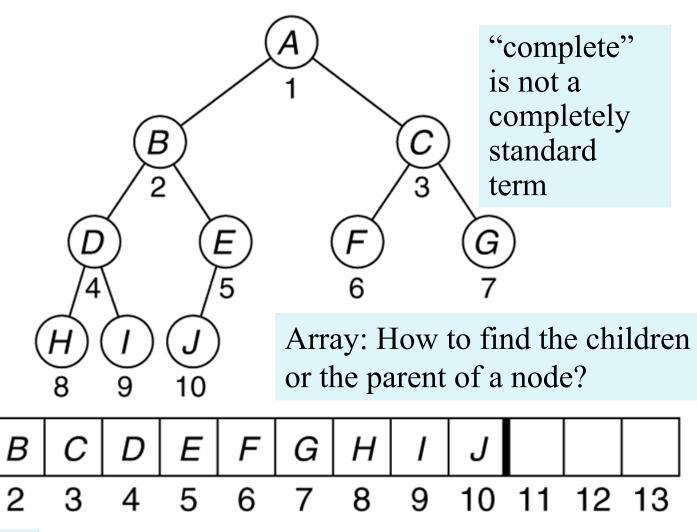
Storage (an array)

Algorithms for insertion and deleteMin

Figure 21.1

A complete binary tree and its array representation

Notice the lack of explicit pointers in the array



One "wasted" array position (0)

The (min) heap-order property: every node's value is ≤ its childrens' values

A **Binary** (min) **Heap** is a complete Binary Tree (using the array implementation, as on the previous slide) that has the heap-order property everywhere.

In a binary heap, where do we find

- •The smallest element?
- •2nd smallest?
- •3rd smallest?

Insert and DeleteMin

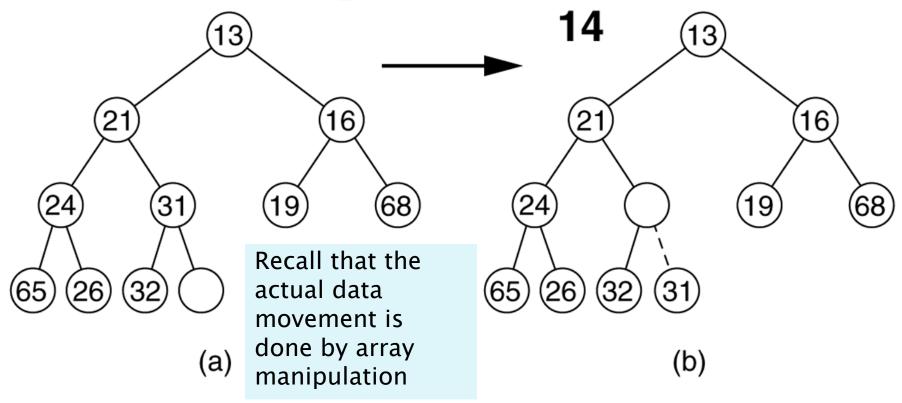
- Idea of each:
 - 1. Get the **structure** right first
 - Insert at end (bottom of tree)
 - Move the last element to the root after deleting the root
 - 2. Restore the heap-order property by percolating (swapping an element/child pair)
 - Insert by percolating up: swap with parent
 - DeleteMin by percolating down: swap with child with min value

Nice demo:

http://www.cs.usfca.edu/~galles/visualization/Heap.html

Attempt to insert 14, creating the hole and bubbling the hole up

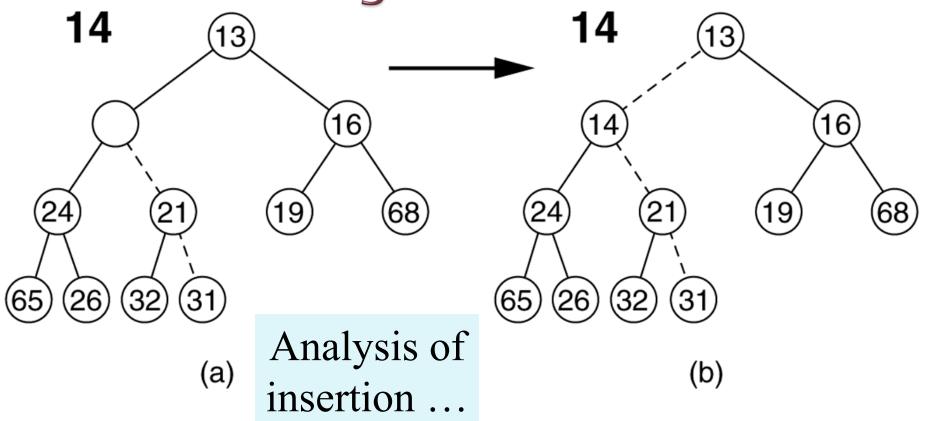
Insertion algorithm



Create a "hole" where 14 can be inserted. Percolate up!

The remaining two steps required to insert 14 in the original heap shown in Figure 21.7

Insertion Algorithm continued



© 2002 Addison Wesley

Code for Insertion

```
/**
        * Adds an item to this PriorityQueue.
        * @param x any object.
        * @return true.
       public boolean add( AnyType x )
 6
7
           if( currentSize + 1 == array.length )
 8
               doubleArray( );
10
               // Percolate up
11
           int hole = ++currentSize:
12
           array[0] = x:
13
14
           for(; compare(x, array[hole / 2]) < 0; hole / = 2)
15
               array[ hole ] = array[ hole / 2 ];
16
           array[hole] = x:
17
18
           return true;
19
20
```

figure 21.9

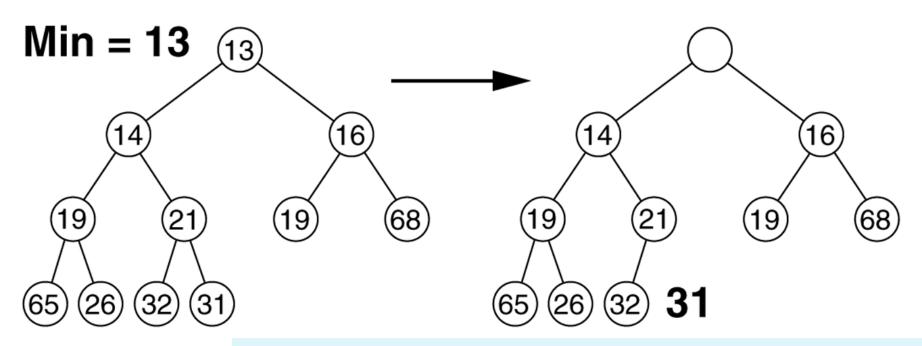
The add method

Your turn: Insert into an initially empty heap:

6 4 8 1 5 3 2 7

DeleteMin algorithm

The *min* is at the root. Delete it, then use the **percolateDown** algorithm to find the correct place for its replacement.

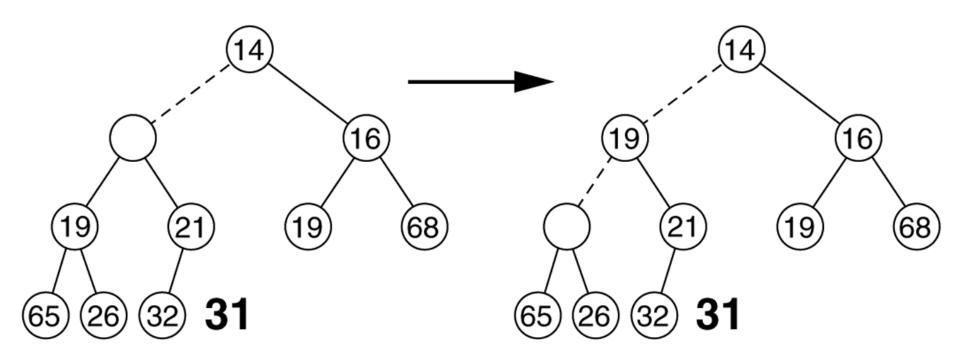


We must decide which child to promote, to make room for 31.

Figure 21.10 Creation of the hole at the root

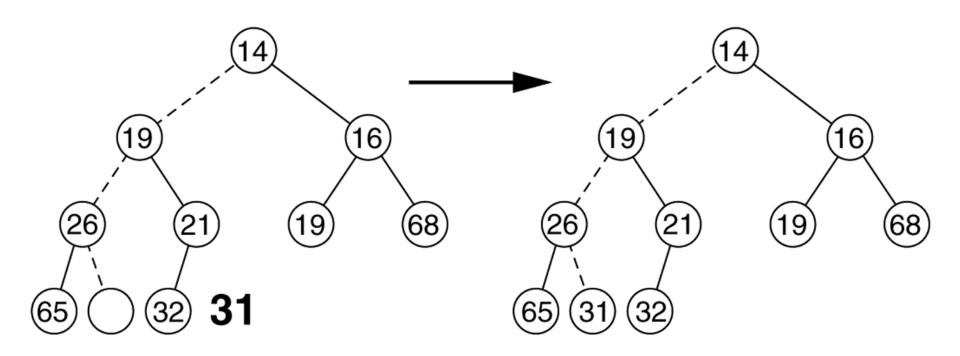
Figure 21.11 The next two steps in the deleteMin operation

DeleteMin Slide 2



The last two steps in the deleteMin operation

DeleteMin Slide 3



```
public Comparable deleteMin( )
    Comparable minItem = findMin();
    array[ 1 ] = array[ currentSize-- ];
    percolateDown( 1 );
    return minItem:
                                        Compare node to its children,
                                        moving root down and
private void percolateDown( int hole )
                                        promoting the smaller child until
    int child;
                                        proper place is found.
    Comparable tmp = array[ hole ];
    for( ; hole * 2 <= currentSize; hole = child )</pre>
        child = hole * 2;
        if ( child != currentSize &&
                array[ child + 1 ].compareTo( array[ child ] ) < 0 )
            child++:
        if ( array[ child ].compareTo( tmp ) < 0 )</pre>
            array[ hole ] = array[ child ];
                                                        We'll re-use
        else
                                                        percolateDown
            break:
                                                        in HeapSort
    array[ hole ] = tmp;
```

Insert and DeleteMin commonalities

- Idea of each:
 - 1. Get the **structure** right first
 - Insert at end (bottom of tree)
 - Move the last element to the root after deleting the root
 - 2. Restore the heap-order property by percolating (swapping an element/child pair)
 - Insert by percolating up: swap with parent
 - Delete by percolating down: swap with child with min value

Summary: Implementing a Priority Queue as a binary heap

- Worst case times:
 - findMin: O(1)
 - insert: amortized O(log n), worst O(n)
 - deleteMin O(log n)
- big-oh times for insert/delete are the same as in the balanced BST implementation, but ...
 - Heap operations are much simpler to write.
 - A heap doesn't require additional space for pointers or balance codes.

Binary Heaps worktime

Read Heaps and heapsort instructions

Check out BinaryHeaps

You may leave early if you finish the heap implementation.
Otherwise aim to finish before next class

Next time: heapsort

Heapsort

Use a binary heap to sort an array.

Using data structures for sorting

- Start with an empty structure.
- Insert each item from the unsorted array into the data structure
- Copy the items from the data structure, one at a time, back into the array, overwriting the unsorted data.
- (draw this now)
- What data structures work in this scheme?
 - BST? Hash set? Priority queue?
- What is the runtime?

Using a Heap for sorting

- Start with empty heap
- Insert each array element into heap
- Repeatedly do deleteMin, copying elements back into array.
- One alternative for space efficiency:
 - We could save space by doing the whole sort in place, using a "maxHeap" (i.e. a heap where the maximum element is at the root instead of the minimum)
 - http://www.cs.usfca.edu/~galles/visualization/HeapSort .html
- Analysis?
 - Next slide ...

Analysis of simple heapsort

- Add the elements to the heap
 - Repeatedly call insertO(n log n)
- Remove the elements and place into the array
 - Repeatedly call deleteMin
 O(n log n)
- Total
 O(n log n)

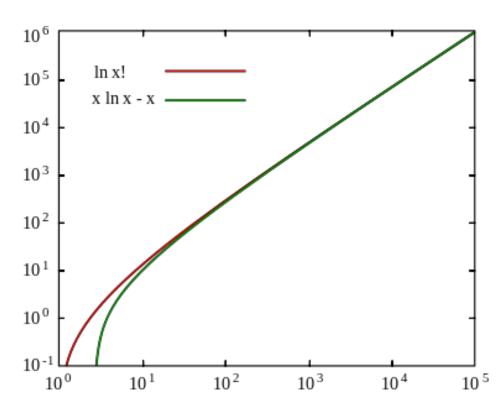
- Can we do better for the insertion part?
 - Yes, insert all the items in arbitrary order into the heap's internal array and then use BuildHeap (next)

Analysis of simple heapsort

Use Stirling's approximation:

$$\ln n! = n \ln n - n + O(\ln(n))$$

http://en.wikipedia.org/wiki/Stirling%27s_approximation

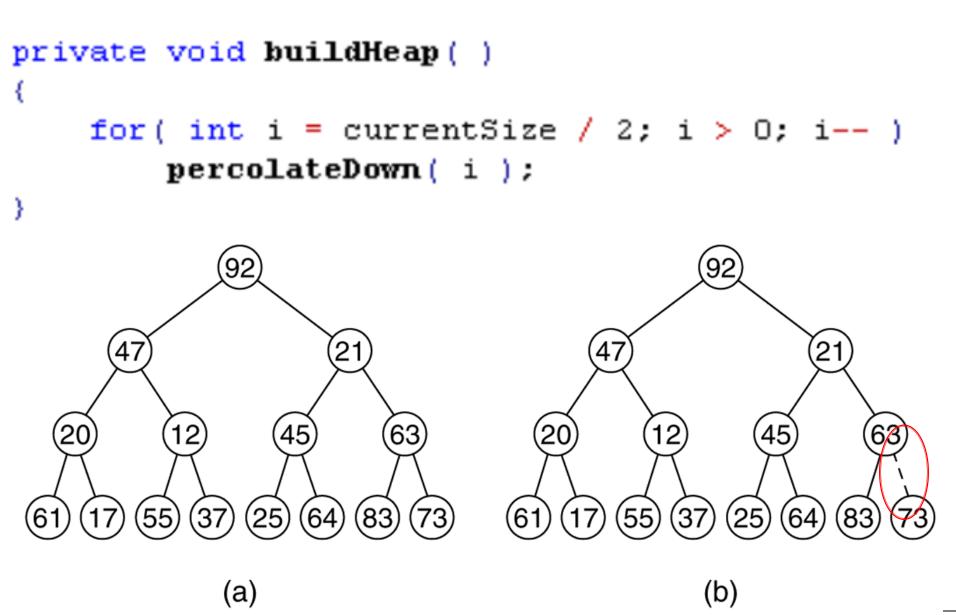


BuildHeap takes a complete tree that is not a heap and exchanges elements to get it into heap form

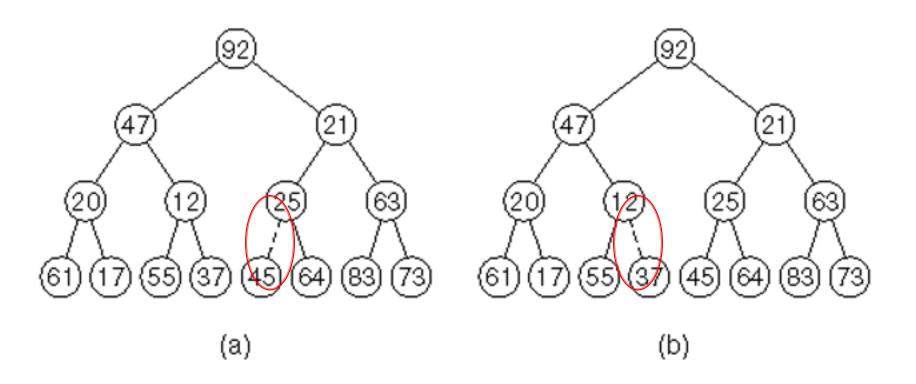
At each stage it takes a root plus two heaps and "percolates down" the root to restore "heapness" to the entire subtree

```
/**
 * Establish heap order property from an arbitrary
 * arrangement of items. Runs in linear time.
 */
private void buildHeap( )
    for ( int i = currentSize / 2; i > 0; i-- )
        percolateDown( i );
                              Why this starting point?
```

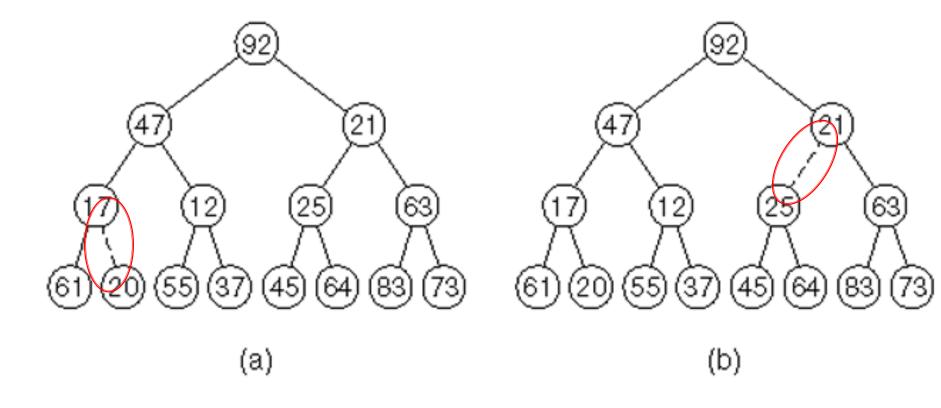
Figure 21.17 Implementation of the linear-time buildHeap method



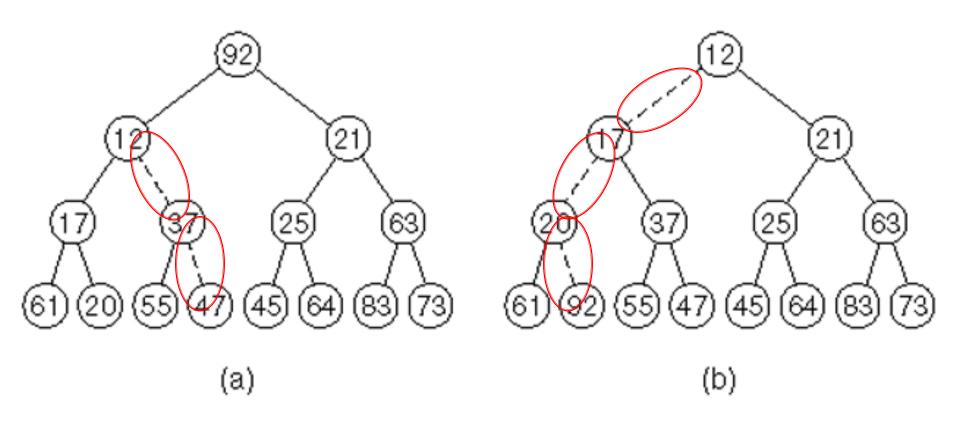
- (a) After percolateDown(6);
- (b) after percolateDown(5)



- (a) After percolateDown(4);
- (b) after percolateDown(3)



- (a) After percolateDown(2);
- (b) after percolateDown(1) and buildHeap terminates



Analysis of BuildHeap

- ▶ Find a summation that represents the maximum number of comparisons required to rearrange an array of N=2^{H+1}-1 elements into a heap
- Can you find a summation and its value?
- In HW8, you'll do this.

Analysis of BuildHeap

- ▶ Find a summation that represents the maximum number of comparisons required to rearrange an array of N=2^{H+1}-1 elements into a heap
 - The summation is $\sum_{k=0}^{H} k 2^{H-k}$.

 and the sum is N H 1
- HW8: prove this formula by induction
 - Can do it strictly by the numbers
 - · Simpler?: Do it based on the trees.

Analysis of better heapsort

- Add the elements to the heap
 - Insert n elements into heap (call buildHeap, faster)
- Remove the elements and place into the array
 - Repeatedly call deleteMin
- Total runtime?
 - θ(n log n)
 - We should expect no faster to sort! Why not?

Worktime now. Aim to finish heapsort by next class, even if not officially due yet.