
Red-black trees

After today, you should be able to…
…determine if a tree is a valid red/black tree
…perform top-down insertion in a red/black tree

Course - Delta
• Nothing, course is good as is ++++++
• More time in class to get work done +++
• Workload a bit too high +++
• More live coding in class ++
• Slides more descriptive, or better way to

remember lecture ++
• More examples in class +
• More questions / engagement during

class +
• Exam difficulty too high +
• Less written homework +
• Some more challenging topics are

covered too fast +
• Quizzes online

Course - Plus
• Quizzes +++++++++++++++++++
• Coding projects ++++++++++++++++++
• Lectures +++++++++
• Written assignments +++++++
• Introducing homework in class +++++++
• Late day policy ++++
• Everything +++
• Office hour help +
• Team programming +
• Consistent due dates +
• Slides +

Self - Delta
• Textbook / read more ++++++++++++++++++
• Start homework early ++++++++
• Work harder / spend more time +++++++
• Get help / tutors / office hours ++++
• Get work done on time, better scheduling ++
• Reflect more on assignments / material +++
• Planning before coding +
• Bonus HW questions +
• Study more for written part of exam +

Self - Plus
• Help outside classroom ++++++++++

[Tutor ++++, Other students +++, Office hours ++]
• Start early +++++
• Treat homework seriously +++++
• Textbook ++++
• Review course materials ++++
• Redo problems I don’t understand / reflect on solutions +++
• Review thoroughly before exams +++
• Effort / struggle / time +++
• Try to finish homework early ++
• Personal notes / quizzes ++
• Staying engaged in class +

Surprise
• More math/visual/analysis than coding ++++++++++++++

[“230: computer science, vs. 220/120: coding.”]
• More time consuming / difficult than expected, workload is intense! +++++++++
• I’m good at this / Doing better than my expectations +++
• Fun / enjoyable / exciting to think about algorithm design +++
• Emphasis on efficiency +
• Workload is manageable! +

• Milestone 1 is graded on unit tests only.

• But…be sure to fix efficiency issues for the future
• See final notes in specification
• Cannot recalculate size or height to update balance

codes or handle rotations.
• You can recalculate rank and balance codes: these are

O(1) computations per node.
• Suggestion: update rank on the way down the tree.
• Update balance codes and do rotations on the way up.
• So each is O(log n) total
• Know when you can stop! (day 14 slides have the algorithm

for insertion, you’ll have to think about deletion)

1. It is a BST
2. Every node is either colored red or black.
3. The root is black.
4. No two successive nodes are red.
5. Every path from the root to a null node has the

same number of black nodes (“perfect black
balance”)

1

Runtime is O(height)
Since it’s a BST, runtime of insert and delete
should also be O(height)

Best-case: if all nodes black, it is ~log n.
Worst case: every other node on the longest path
is red. Height ~2 log n.
Note: Not height-balanced:

Sometimes taller but often shorter on
average.

• Like BST:
• Insert at leaf
• Color it red (to keep perfect black balance)

• But could make two reds in a row?
• On the recursive travel back up the tree (like AVL),
• rotate (single- and double-, like AVL)
• and recolor (new)
• Show now that various “rotation+recoloring”s fix two

reds in a row while maintaining black balance.

• At end of insert, always make root of the
entire tree black (to fix property 3).

2

Copyright © 2010 Pearson Education

2

Copyright © 2010 Pearson Education

2

Copyright © 2010 Pearson Education

2

• Bottom-Up insertion strategy must be
recursive.

• An alternative:
• If we ever had a black node with two red children, swap the

colors and black balance stays.
• Details next…

2

X

Y Z
X

ZY

Situation: A black node with two red children.

Action: - Recolor the node red and the
children black (if root, make black).

- If the parent is red, perform rotations,
otherwise continue down the tree

Does this change black balance? No.

X

Y Z
X

ZY

• On the way down the tree to the insertion point, if ever see a
black node with two red children, swap the colors.

If X’s parent is red, perform rotations,
otherwise continue down the tree

• The rotations are done while traversing down the tree to the
insertion point.
• Avoid rotating into case (c) (2 red siblings) altogether.

• Top-Down insertion can be done with loops without recursion or
parent pointers, so is slightly faster.

2

X

Y Z
X

ZY

• Rotate when an insertion or color flip
produces two successive red nodes.

• Rotations are just like those for AVL trees:
• If the two red nodes are both left children or both

right children, perform a single rotation.
• Otherwise, perform a double rotation.

• Except we recolor nodes instead of adjusting
their heights or balance codes.

X

ZY

P

G

U

S
X

ZY

P

G

US

• The rotation is done on X’s grandparent, G.
• The colors of P and G are flipped.

X

ZY

P

G

U

S

X

YS

P

G

U

Z

•Again, the rotation is done on X’s grandparent, G.

X

YS

P

G

U

Z

P

YS

X

G

UZ

• Recolor X and G

1. Insert: 1, 2, 3, 4, 5, 6, 7, 8

2. Insert: 7, 6, 5, 4, 3, 2, 1, 1
• Relationship with (1)?
• Duplicates not inserted.

3. Insert: 10, 85, 15, 70, 20, 60, 30, 50, 65,
80, 90, 40, 5, 55

4. Use applet [linked to in Schedule for today]
to check your work.

3

• Java uses:

• Slightly faster than AVL
trees

• What’s the catch?
• Need to maintain pointers

to lots of nodes (child,
parent, grandparent, great-
grandparent, great-great-
grandparent)

• The deletion algorithm is
nasty.

