
AVL trees and rotations

/

This week, you should be able to…
…perform rotations on height-balanced trees,

on paper and in code
… write a rotate() method
… search for the kth item in-order using rank

} Term project partners posted
◦ Honored 3-way agreement.
◦ What if preferred people already working with others?
◦ Sit with partners now

} Test 2a next class

} See schedule page for due date reminders

} Consider an arbitrary method named foo()

foo()
If base case, return the appropriate value
◦ 1. Compute a value for the node
◦ 2. Call left.foo() and right.foo()
◦ 3. Combine the results and return them

} This is O(n) if the computation on the node is constant-time
} When searching in a BST, you only need to call left.foo() or

right.foo(), so it is O(height)
} Style: pass info through parameters and return values.
◦ Not extra instance variables (fields).

If you submitted HW4, you will receive a solution in your repo
before the test.

} Total time to do insert/delete =
◦ Time to find the correct place to insert = O(height)
◦ + time to detect an imbalance
◦ + time to correct the imbalance

} If don’t bother with balance:

} If try to keep perfect balance:
◦ Height is O(log n) BUT …
◦ But maintaining perfect balance is O(n)

} Height-balanced trees are still O(log n)
◦ For T with height h, N(T) ≤ Fib(h+3) – 1
◦ So H < 1.44 log (N+2) – 1.328 *

} AVL (Adelson-Velskii and Landis) trees maintain
height-balance using rotations

} Are rotations O(log n)? We’ll see…

Q1

Different representations for / = \ :
� Just two bits in a low-level language
� Enum in a higher-level language

or/ = \or

Q2

} Assume tree is height-balanced before
insertion

} Insert as usual for a BST
} Move up from the newly inserted node

to the lowest “unbalanced” node (if any)
◦ Use the balance code to detect unbalance -

how?
◦ Why is this O(log n)?
� We move up the tree to the root in worst case,

NOT recursing into subtrees to calculate heights
} Do an appropriate rotation (see next

slides) to balance the sub-tree rooted at
this unbalanced node

/

Q3

} For example, a single left rotation:

} Two basic cases
◦ “See saw” case:
� Too-tall sub-tree is on the outside
� So tip the see saw so it’s level
◦ “Suck in your gut” case:
� Too-tall sub-tree is in the middle
� Pull its root up a level

Diagrams are from Data Structures by E.M. Reingold and W.J. Hansen

Unbalanced node

Middle sub-tree
attaches to lower node

of the “see saw”

Q4-5

Weiss calls this “right-left double rotation”

Unbalanced node

Pulled up
Split between the

nodes pushed down

Q6-7

} Write the method:
} static BalancedBinaryNode singleRotateLeft (

BalancedBinaryNode parent, /* A */
BalancedBinaryNode child /* B */) {

}
} Returns a reference to the new root of this subtree.
} Don’t forget to set the balanceCode fields of the nodes.

Q8

} Write the method:
} BalancedBinaryNode doubleRotateRight (

BalancedBinaryNode parent, /* A */
BalancedBinaryNode child, /* C */
BalancedBinaryNode grandChild /* B */) {

}
} Returns a reference to the new root of this subtree.
} Rotation is mirror image of double rotation from an

earlier slide

} If you have to rotate after insertion, you can
stop moving up the tree:
◦ Both kinds of rotation leave height the same as

before the insertion!

} Is insertion plus rotation cost really O(log N)?

Q9,Q1,Q10-11

Insertion/deletion
in AVL Tree: O(log n)

Find the imbalance point (if any): O(log n)
Single or double rotation: O(1)

(looking ahead) for deletion, may have
to do O(log N) rotations

Total work: O(log n)

Like BST, except:

1. Keep height-balanced
2. Insertion/deletion by index, not by comparing elements.

So not sorted

} EditorTree et = new EditorTree()
} et.add(‘a’) // append to end
} et.add(‘b’) // same
} et.add(‘c’) // same. Rebalance!
} et.add(‘d’, 2) // where does it go?
} et.add(‘e’)
} et.add(‘f’, 3)

} Notice the tree is height-balanced (so height
= O(log n)), but not a BST

} Gives the in-order position of this node
within its own subtree
◦ i.e., the size of its left subtree

} How would we do get(pos)?

} Insert and delete start similarly

0-based
indexing

Milestone 1 due in 1 week.
Start soon!

Read the specification and check out the
starting code

} Goals
◦ Runtime of code with loops, including divide and

conquer (cut in half = logs)
� Big-Oh and cousins

◦ Using common ADTs
� Difference between sets and maps, hash and tree

implementations
� Decisions about which ADT is best to use for a given

problem
� For correctness and efficiency

� Nice job with PurgeableStack

} Overall a good start!

