
Growable Arrays Continued
Big-Oh and its cousins

Submit Growable Array exercise
Answer Q1-3 from today's in-class quiz.  

Q1-3



} Finish course intro
} Growable Array recap
} Big-Oh and cousins

} After today, you’ll be able to 
◦ Use the term amortized appropriately in analysis
◦ explain the meaning of big-Oh, big-Omega (W), and 

big-Theta (q)
◦ apply the definition of big-Oh to prove runtimes of 

functions



} You will not usually need the textbook in 
class

} All should do piazza introduction post (a 
few students left)



} See syllabus for exam weighting and caveats. 

} Think of every program you write as a 
practice test
◦ Especially HW4 and test 2a



◦ Short but intense! ~45 lines of code total in our 
solutions to all but Adder

◦ Be sure to read the description of how it will be 
graded. Note how style will be graded.

◦ Demo: Running the JUnit tests for test, file, 
package, and project

Demo: Run the Adder program



} About Homework 1?
◦ Aim to complete tonight, since it is due after next 

class
◦ It is substantial
◦ The last problem (the table) is worth lots of points!

} About the Syllabus?

Q2-3



How many times does sum++ run?

for (i = 4; i < n; i++)
for (j = 0; j <= n; j++)

sum++;

Why is this one so easy? (does the inner loop depend 
on outer loop?)
What if inner were (j = 0; j <= i ; j++) ?



How many times does sum++ run?

for (i = 1; i <= n; i *= 2)
sum++;

Be precise, using floor/ceiling as needed, to get full 
credit.



Daring to double



200



} Doubling each time:
◦ Assume that N = 5 (2k) + 1.

} Total # of array elements copied:
k N #copies
0 6 5
1 11 5 + 10 = 15
2 21 5 + 10 + 20 = 35
3 41 5 + 10 + 20 + 40 = 75
4 81 5 + 10 + 20 + 40 + 80 = 155
k = 5 (2k) + 1 5(1 + 2 + 4 + 8 + … + 2k)

Express as a closed-form expression in 
terms of K, then express in terms of N



} Assume that N = 5 (2k) + 1.
} Total # of array elements copied 

= 5(1 + 2 + 4 + 8 + … + 2k)
} Do in terms of k, then in terms of N 



} Total # of array elements copied:

N #copies
6 5 
7 5 + 6
8 5 + 6 + 7 
9 5 + 6 + 7 + 8 
10 5 + 6 + 7 + 8 + 9
N ???

Express as a closed-form 
expression in terms of N



} What’s the amortized cost of adding an 
additional string…
◦ in the doubling case?
◦ in the add-one case?

Amortized cost means the “average per-operation cost” while 
adding to a single GrowableArray over time.

} So which should we use?

Q4-5



Q6



x



Simplify: Note that log n (without a specified) base means log2n.
Also, log n is an abbreviation for log(n).

1. log (2 n log n)

2. log(n/2)

3. log (sqrt (n))

4. log (log (sqrt(n)))

5. log4 n

6. 22 log n

7. if n=23k - 1, solve for k.

Where do logs come from in algorithm analysis?



Simplify: Note that log n (without a specified) base means log2n.
Also, log n is an abbreviation for log(n).

1. 1+log n + log log n

2. log n - 1

3. ½ log n

4. -1 + log log n

5. (log n) / 2

6. n2

7. n+1=23k

log(n+1)=3k
k= log(n+1)/3

A: Any time we cut things in half at each step 
(like binary search or mergesort)



} Algorithms may have different time 
complexity on different data sets

} What do we mean by "Worst Case"?
} What do we mean by "Average Case"?
} What are some application domains where 

knowing the Worst Case time complexity 
would be important?

} http://cacm.acm.org/magazines/2013/2/160173-the-tail-
at-scale/fulltext





Worst-case:
O(n)

amortized:
O(1)



Big-Oh
Big-Omega
Big-Theta



} We only care what happens when N gets large

} Is the function linear?  quadratic? 
exponential?



Figure 5.1
Running times for small inputs

Data Structures & Problem Solving using JAVA/2E Mark Allen Weiss      © 2002  Addison Wesley

(linear looks 
constant for 
small inputs)



Figure 5.2
Running times for moderate inputs
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Figure 5.3
Functions in order of increasing growth rate

Data Structures & Problem Solving using JAVA/2E Mark Allen Weiss      © 2002  Addison Wesley

a.k.a "log linear"

The answer to most big-
Oh questions is one of 
these functions



} Drop lower order terms and constant factors

} 7n – 3 is O(n)

} 8n2logn + 5n2 + n is O(n2logn)



} Given functions f(n) and g(n), we say that f(n) is O(g(n)) if and 
only if f(n) ≤ c g(n) for all n ≥ n0.

} Two constants: c > 0 is a real number and n0 ≥ 0 is an integer. 
} f(n) and g(n) are functions over non-negative integers.



} A function f(n) is (in) O(g(n)) if there exist two 
positive constants c and n0 such that for all  n³ n0,  
f(n) £ c g(n)

} Q: How to prove that f(n) is O(g(n))? 
A: Give c and n0

} Ex: f(n) = 4n + 15, g(n) = ???.     

Assume that all functions have non-negative 
values, and that we only care about n≥0.  For 
any function g(n), O(g(n)) is a set of functions. 

Q8-9



} A function f(n) is (in) O(g(n)) if there exist two 
positive constants c and n0 such that for all  n³ n0,  
f(n) £ c g(n)

} Q: How to prove that f(n) is O(g(n))? 
A: Give c and n0

} Ex 2: f(n) = n + sin(n), g(n) = ??? 

Q8-9



} f(n) = n + 12, g(n) = ???.     
◦ g(n) = n. Then c =3 and n0 = 6, or c = 4 

and n0 = 4, etc.
} f(x) = x + sin(x): g(n) = n, c = 2, n0 = 1
} f(x) = x2 + sqrt(x): g(n) = n2, c=2, n0 = 1



} f(n) is O(g(n)) if f(n) ≤ cg(n) for all n ≥ n0
◦ So big-Oh (O) gives an upper bound

} f(n) is W(g(n)) if f(n) ≥ cg(n) for all n ≥ n0
◦ So big-omega (W) gives a lower bound

} f(n) is q(g(n)) if it is both O(g(n)) and W(g(n))
Or equivalently:

} f(n) is q(g(n)) if c1g(n) ≤ f(n) ≤ c2g(n) for all n ≥ n0
◦ So big-theta (q) gives a tight bound

} True or false: 3n+2 is O(n3)
} True or false: 3n+2 is Θ(n3)

Q7b,c, 10



} True or false: 3n+2 is O(n3)
} True or false: 3n+2 is Θ(n3)



} By definition, applied to functions.
“f(n) = n2/2 + n/2 – 1    is   Θ(n2)”

} Can also be applied to an algorithm, referencing its 
running time: e.g., when f(n) describes the number of 
executions of the most-executed line of code.

“selection sort is Θ(n2)”

} Finally, can be applied to a problem, referencing its 
complexity: the running time of the best algorithm that 
solves it.

“The sorting problem is O(n2)”
Q7b,c, 10



} Give tightest bound you can
◦ Saying 3n+2 is O(n3) is true, but not as useful as 

saying it’s O(n)
◦ On a test, we’ll ask for Θ to be clear. 

} Simplify:
◦ You could also say: 3n+2 is O(5n-3log(n) + 17)
◦ And it would be technically correct…
◦ It would also be poor taste … and your grade will 

reflect that.



} There are times when one might choose a 
higher-order algorithm over a lower-order 
one.

} Brainstorm some ideas to share with the class

C.A.R. Hoare, inventor of quicksort, wrote:
Premature optimization is the root of all evil.

Q11


