Q1-3

CSSE 230 Day 2

Growable Arrays Continued
Big-Oh and its cousins

Submit Growable Array exercise

Answer Q1-3 from today's in-class quiz.

Agenda and goals

» Finish course intro
» Growable Array recap
» Big-Oh and cousins

» After today, you’ll be able to
- Use the term amortized appropriately in analysis
- explain the meaning of big-Oh, big-Omega (Q), and
big-Theta (0)

- apply the definition of big-Oh to prove runtimes of
functions

Announcements and FAQ

» You will not usually need the textbook in
class

» All should do piazza introduction post (a
few students left)

You must demonstrate programming
competence on exams to succeed

» See syllabus for exam weighting and caveats.
» Think of every program you write as a

practice test
- Especially HW4 and test 2a

Warm Up and Stretching thoughts

- Short but intense! ~45 lines of code total in our
solutions to all but Adder

- Be sure to read the description of how it will be
graded. Note how style will be graded.

- Demo: Running the JUnit tests for test, file,
package, and project

Demo: Run the Adder program

Questions?

» About Homework 17

- Aim to complete tonight, since it is due after next
class

> It is substantial
- The last problem (the table) is worth lots of points!

» About the Syllabus?

Q2-3

Homework 1 help

How many times does sum-++ run?

fori=4;i<n;i++)
for(j =0;j <=n; j++)
sum++;

Why is this one so easy? (does the inner loop depend
on outer loop?)
What if innerwere (j =0;j <=1i;j++)?

Homework 1 help

How many times does sum-++ run?

fori=1;i<=n;i*=2)
sum-++;

Be precise, using floor/ceiling as needed, to get full
credit.

Growable Arrays Table

N Ex Answers for problem 2
4 0 0

5 0 0

6 5 5

7 5 5+6=11

10 5 5+6+7+8+9=235
11 5+10=15 5+6+7+8+9+10=45
20 15 sum(i, 1=5..19) = 180 using Maple
21 5+10+20=35 sum(i, i=5..20) = 200
40 35 sum(i, 1=5..39) =770
41 | 5+10+20+40=75 sum(i, i=5..40) = 810

Doubling the Size

» Doubling each time:
- Assume that N = 5 (2¥) + 1.

» Total # of array elements copied:

N copies

0 6
1 11
2 21
3 41
4 81
k

=502 + 1

Express as a closed-form expression in
terms of K, then express in terms of N

5

5+10=15

5+ 10+ 20 = 35
5+10+ 20+ 40 =75

5+ 10+ 20+ 40 + 80 =155
5(1 +2+4+ 8+ ... + 2K

Doubling the Size (solution)

» Assume that N = 5 (2K) + 1.

» Total # of array elements copied
=51 +2+4+8+ ...+ 25

» Do in terms of k, then in terms of N

Adding One Each Time

» Total # of array elements copied:

N |#copies

6 5

/ 54+ 6

8 5+6+7

9 5+6+7+8
10 5+6+7+8+9
N 7?

Express as a closed-form
expression in terms of N

Conclusions

» What’s the amortized cost of adding an
additional string...

> in the doubling case?
> in the add-one case?

Amortized cost means the “average per-operation cost” while
adding to a single GrowableArray over time.

» So which should we use?

Q4-5

Q6

Review these as needed

* Logarithms and Exponents
- properties of logarithms: - properties of exponentials:

b+c) _ b
lOgb(X}f) - IOng t Iogby al?") = 2’

logp(x/y) = log,x - logyy abc — (ab)c
logpx” = alogpx
ab/a¢ = a(b-©)
log,X
log), X=—— log,b
log,b b=a
c*log,b

bC_

Practice with exponentials and logs
(Do these with a friend after class, not to turn in)

Simplify: Note that log n (without a specified) base means log,n.
Also, log n is an abbreviation for log(n).

B > -

log (2 n log n) S. log, n

log(n/2) 6. 22logn

log (sqrt (n)) 7. if n=23k- 1, solve for k.
log (log (sqrt(n)))

Where do logs come from in algorithm analysis?

Solutions
No peeking!

Simplify: Note that log n (without a specified) base means log,n.
Also, log n is an abbreviation for log(n).

1. 1+log n + log log n S. (logn) /2
2. logn-1 6. n’

3. logn 7. n+1=2k
log(n+1)=3k

. -1+
4. -1 +loglogn k= log(n+1)/3

A: Any time we cut things in half at each step
(like binary search or mergesort)

Running Times

» Algorithms may have different time
complexity on different data sets

» W
» W
» W

nat do we mean by "Worst Case™?
nat do we mean by "Average Case'?

nat are some application domains where

knowing the Worst Case time complexity
would be important?

4

Average Case and Worst Case

2 ——— wWorst-case

4 ms
ave rage-case

-

Ims

- bDest-case

Running Time

2 ms

| ms

A B C D E F G
[nput Instance

Worst-case vs amortized cost for adding an
element to an array using the doubling scheme

Worst-case:
O(n)

amortized:
o

Note: average case means averaged
over inputs, amortized cost means
averaged over time.

Asymptotic Analysis
» We only care what happens when N gets large

» Is the function linear? quadratic?
exponential?

Figure 5.1

Running times for small inputs

10 i I i i I i i I i
Linear
O(Nlog N)
8 Quadratic 7
Cubic

Running Time (milliseconds)

0 | | 1 | | | | | |
10 20 30 40 50 60 70 80 90 100

Input Size (N)

Data Structures & Problem Solving using JAVA/2E ~ Mark Allen Weiss ~ © 2002 Addison Wesley

Figure 5.2

Running times for moderate inputs

Running Time (seconds)

0.8

0.6

0.4

0.2

[[[

Linear

O(Nlog N)
Quadratic

Cubic

1000

2000

3000

4000 5000 6000 7000 8000

Input Size (N)

9000 10000

Data Structures & Problem Solving using JAVA/2E

Mark Allen Weiss

© 2002 Addison Wesley

Figure 5.3

Functions in order of increasing growth rate

The answer to most big-

FUNCTION NAME Oh questions 1s one of
¢ Constant these functions

log N Logarithmic

logN Log-squared

N Linear

Nlog N N log M a.k.a "log linear"

N1 Quadratic

N? Cubic

2N Exponential

Data Structures & Problem Solving using JAVA/2E ~ Mark Allen Weiss ~ © 2002 Addison Wesley

Simple Rule for Big—Oh

» Drop lower order terms and constant factors
» 7n = 3 is O(n)

» 8n¢logn + 5n% + n is O(n4logn)

Definition of Big—Oh

» Given functions f(n) and g(n), we say that f(n) is O(g(n)) if and
only if f(n) < c g(n) for all n = n,,.

» Two constants: ¢ > 0 is a real number and n, > O is an integer.
» f(n) and g(n) are functions over non-negative integers.

Running Time

Input Size

To prove Big Oh, find 2 constants

» A function f(n) is (in) O(g(n)) if there exist two
positive constants ¢ and n, such that for all n>n,,
f(n) < c g(n)

» Q: How to prove that f(n) is O(g(n))?

A: Give c and n,

Assume that all functions have non-negative
values, and that we only care about n>0. For
any function g(n), O(g(n)) is a set of functions.

» Ex: f(n) = 4n + 15, g(n) = 7?2,

Q8-9

To prove Big Oh, find 2 constants

» A function f(n) is (in) O(g(n)) if there exist two
positive constants ¢ and n, such that for all nx ny,
f(n) < c g(n)

» Q: How to prove that f(n) is O(g(n))?
A: Give c and n,

» Ex 2: f(n) = n + sin(n), g(n) = 77?

Q8-9

Hidden: Answers to examples

» f(n) = n + 12, g(nh) = 7722,

og(n) =n.Thenc=3 andn,=6,0orc=4
and n, = 4, etc.

» f(X) = x + sin(x): g(n) =n,c=2,n, =1
» f(x) = x2 + sqrt(x): g(n) = n?, c=2, ny = 1

Big-Oh, Big-Omega and Big-Theta
O() () 0()

» f(n) is O(g(n)) if f(n) < cg(n) for all n = n,
> So big-Oh (O) gives an upper bound

f(n) is Q(g(n)) if f(n) > cg(n) for all n > n,

> S0 big-omega (Q) gives a lower bound

v

f(n) is 6(g(n)) if it is both O(g(n)) and Q(g(n))
Or equivalently:

f(n) is 8(g(n)) if c;g(n) < f(n) < ¢c,g(n) for all n = n,
> So big-theta (0) gives a tight bound

v

v

True or false: 3n+2 is O(n3)
True or false: 3n+2 is O(n3)

v Vv

Q7b,c, 10

» True or false: 3n+2 is O(n3)
» True or false: 3n+2 is O(n3)

Uses of O, (O, ©

» By definition, applied to functions.
“fn) = n¢/2 + n/2-1 is O(n?)’

» Can also be applied to an algorithm, referencing its
running time: e.g., when f(n) describes the number of
executions of the most-executed line of code.

“selection sort is ©(n?)”

» Finally, can be applied to a problem, referencing its
complexity: the running time of the best algorithm that
solves it.

“The sorting problem is O(n?4)”
Q7b,c, 10

Big-Oh Style

» Give tightest bound you can
- Saying 3n+2 is O(n3) is true, but not as useful as
saying it’s O(n)
- On a test, we’ll ask for © to be clear.
» Simplify:
> You could also say: 3n+2 is O(5n-3log(n) + 17)
- And it would be technically correct...

> It would also be poor taste ... and your grade will
reflect that.

Efficiency in context

» There are times when one might choose a
higher-order algorithm over a lower-order
one.

» Brainstorm some ideas to share with the class

C.A.R. Hoare, inventor of quicksort, wrote:
Premature optimization is the root of all evil.

Q11

