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CSSE 230 Day 25

Skip Lists

After today, you should be able to ...
... explain the idea of probabilistic skip lists
... implement skip list insertion and deletion



Announcements

» 1 will be off campus for much of Weds -
Monday.

» Thursday and Friday’s classes are on Binary
Heaps and Heap Sort.

» They can be done:

- As normal (I will be in class and there will be
worktime in class to ask questions)

- As self-study (completed quiz packet will be graded
and count as attendance)
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An alternative to AVL trees

» Indexed lists.
One-level index.

o 2nd-level index.
3rd-level index
log-n-level index.

(@]

(@]

(e]

Remember the problem

o - - with keeping trees
» Problem: insertion and deletion. e P SR

» Solution: Randomized node height: Skip lists.
> Pugh, 1990 CACM.

» http://www.cs.umd.edu/class/spring2002/cmsc4?2
0-0401/demo/SkipList2/

» Applet, certain browsers may reject

MY Note that we can iterate through the list easily
and in increasing order


http://www.cs.umd.edu/class/spring2002/cmsc420-0401/demo/SkipList2/

SkipList representation:
Each node has a list of links
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Search for 50:
Start at top, look ahead, and work down.
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Only visits 6 non-dummy nodes
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Insert 42:
Make new node. Find list of previous nodes.
Then update links.
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To set height of new node: flip coin until get tails
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Delete 25:
Find list of previous nodes. Then update links.
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Next slides show an alternative representation we
won’t use, but with more detail

» Uses a bit more space.
» Michael Goodrich and Roberto Tamassia.
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Figure 8.9: Example ol a skip list.



Methods

after(p): Return the position following p on the same level.
before(p): Return the position preceding p on the same level.
below(p): Return the position below p in the same tower.

above(p): Return the position above p in the same tower.



Search algorithm

|. If S.below(p) is null. then the search terminates—we are af the bottom and
have located the largest item in S with key less than or equal to the search
key k. Otherwise, we drop down to the next lower level in the present tower
by setting p — S.below{ p).

2. Starting at position p. we move p forward until it is at the right-most position

on the present level such that key(p) < k. We call this the scan forward siep.

Note that such a position always exists, since each level contains the special

keys +>¢ and —oc. In fact, after we perform the scan forward for this level,

p may remain where it started. In any case. we then repeat the previous step.
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Figure 8.10: Example of a search in a skip list. The positions visited when searching
for key 50 are highlighted in blue.



Insertion diagram

ss [=] =]
Sy =1 rip {25} IJ_TEJ 138 =]
8 [=1 L7} 122 Hf'[; -] i
O e o s S i s L o S o ey D o W)
So 27T s a3 = )—Egl—l__l-—L“ 50 55 =]




Insertion algorithm
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Algorithm Skiplnsert{k.e):
Input: ltem (k. e)
Output: None

p < SkipSearch(k)
¢ — insertAfterAbove(p.null. (k.¢)) {we are at the bottom level |
while random() < 1/2 do

while above(p) = null do

p « before(p) {scan backward }
p «— above(p) {jump up 1o higher level}
g « insertAfterAbove(p.q. (k.e)) linsert new item |

Code Fragment 8.5: Insertion in a skip list, assuming random() returns a random
number between 0 and 1. and we never insert past the top level.



Remove algorithm




(sort of) Analysis of Skip Lists

» No guarantees that we won't get O(N)
behavior.
- The interaction of the random number generator
and the order in which things are inserted/deleted

could lead to a long chain of nodes with the same
height.

- But this is very unlikely.

- Expected time for search, insert, and remove are
O(log n).



