7 |

- I

|

44 al i

CSSE 230 Day 25

Skip Lists

After today, you should be able to ...
... explain the idea of probabilistic skip lists
... implement skip list insertion and deletion

Announcements

» 1 will be off campus for much of Weds -
Monday.

» Thursday and Friday’s classes are on Binary
Heaps and Heap Sort.

» They can be done:

- As normal (I will be in class and there will be
worktime in class to ask questions)

- As self-study (completed quiz packet will be graded
and count as attendance)

1-3

An alternative to AVL trees

» Indexed lists.
One-level index.

o 2nd-level index.
3rd-level index
log-n-level index.

(@]

(@]

(e]

Remember the problem

o - - with keeping trees
» Problem: insertion and deletion. e P SR

» Solution: Randomized node height: Skip lists.
> Pugh, 1990 CACM.

» http://www.cs.umd.edu/class/spring2002/cmsc4?2
0-0401/demo/SkipList2/

» Applet, certain browsers may reject

MY Note that we can iterate through the list easily
and in increasing order

http://www.cs.umd.edu/class/spring2002/cmsc420-0401/demo/SkipList2/

SkipList representation:
Each node has a list of links

T2

»20

PR 5
I

»131

»38

39| -

421 =

44

e

501

(55

head

tail

Search for 50:
Start at top, look ahead, and work down.

—'WZ —>|P7 »20

PR 5
I

»131

»38

»139

4

e

501

(55

head

Only visits 6 non-dummy nodes

tail

Insert 42:
Make new node. Find list of previous nodes.
Then update links.

» » » »
» » » »
— — — 'j? rm— —
» » » ~ »

fr— fr— fr— a3 re— fr—

50

—»m]z —>|P7 >0 :25| 31 »38 w39| 42| 4 +—

head
To set height of new node: flip coin until get tails

tail

Delete 25:
Find list of previous nodes. Then update links.

-*WZ

l « T v 1y |

»[50]

(55

head

tail

Next slides show an alternative representation we
won’t use, but with more detail

» Uses a bit more space.
» Michael Goodrich and Roberto Tamassia.

5 {
Sa | +
S o |7 S5 +
S | 25 31 b2
\| = I | 3 | 38 44)
3 | % }2 |7 20 23 4 38 30 44 51) T o

Figure 8.9: Example ol a skip list.

Methods

after(p): Return the position following p on the same level.
before(p): Return the position preceding p on the same level.
below(p): Return the position below p in the same tower.

above(p): Return the position above p in the same tower.

Search algorithm

|. If S.below(p) is null. then the search terminates—we are af the bottom and
have located the largest item in S with key less than or equal to the search
key k. Otherwise, we drop down to the next lower level in the present tower
by setting p — S.below{ p).

2. Starting at position p. we move p forward until it is at the right-most position

on the present level such that key(p) < k. We call this the scan forward siep.

Note that such a position always exists, since each level contains the special

keys +>¢ and —oc. In fact, after we perform the scan forward for this level,

p may remain where it started. In any case. we then repeat the previous step.
Ss =1 €

S [=] {17} e]

$3 =1 [17] e — =]
s» =] —L1z} Ed o EN, I KL
s - O—— s —{ {5 G

So =2 — 17 {20 o 25 |_rJ,—}_Lw HE o =1

Figure 8.10: Example of a search in a skip list. The positions visited when searching
for key 50 are highlighted in blue.

Insertion diagram

ss [=] =]
Sy =1 rip {25} IJ_TEJ 138 =]
8 [=1 L7} 122 Hf'[; -] i
O e o s S i s L o S o ey D o W)
So 27T s a3 =)—Egl—l__l-—L“ 50 55 =]

Insertion algorithm

ss =1 —{ =]
5, Ca— DJ} "‘I—C: 7] O]
S L2217 I—L»_I—L'_I-—EB—D e ST
So [= 12 17 20 25 I—-E{IL}—-EN 39 __I-—EJU_}_{ 50 F— 55 =]

Algorithm Skiplnsert{k.e):
Input: ltem (k. e)
Output: None

p < SkipSearch(k)
¢ — insertAfterAbove(p.null. (k.¢)) {we are at the bottom level |
while random() < 1/2 do

while above(p) = null do

p « before(p) {scan backward }
p «— above(p) {jump up 1o higher level}
g « insertAfterAbove(p.q. (k.e)) linsert new item |

Code Fragment 8.5: Insertion in a skip list, assuming random() returns a random
number between 0 and 1. and we never insert past the top level.

Remove algorithm

(sort of) Analysis of Skip Lists

» No guarantees that we won't get O(N)
behavior.
- The interaction of the random number generator
and the order in which things are inserted/deleted

could lead to a long chain of nodes with the same
height.

- But this is very unlikely.

- Expected time for search, insert, and remove are
O(log n).

