
More hash tables 
EditorTrees 

Check out from SVN: 
   HashSetExercise (individ repos) 



 See schedule page 
 

 Google created a new hash function for Strings, 
reported to be 30-50% faster than others: 

http://google-opensource.blogspot.com/2011/04/introducing-cityhash.html 
 
 
 

 Questions? 
 
 
 
 
 
 

 
 

http://google-opensource.blogspot.com/2011/04/introducing-cityhash.html


 But if there’s already an element at 
(hashCode() % m), we have a 
collision! 

hashCode() “ate” mod  48594983  83 ate 

… 
82 
83 
84 
… 



 Collision? Use the next available space: 
◦ Try H+1, H+2, H+3, … 
◦ Wraparound at the end of the array 
 

 Problem: Clustering 
 

 Animation: 
◦ http://www.cs.auckland.ac.nz/software/AlgAnim/h

ash_tables.html 
 

http://www.cs.auckland.ac.nz/software/AlgAnim/hash_tables.html
http://www.cs.auckland.ac.nz/software/AlgAnim/hash_tables.html


 Expected number of probes =  
◦  1

1−𝜆
  ignoring clustering:  

 
◦ 1
2

1 + 1
1−𝜆 2  taking clustering into account 

 
◦ Recall λ is the load Factor 

 
 Can we do better? 

8 



 Linear probing: 
◦ Collision at H? Try H, H+1, H+2, H+3,...  
 

 Quadratic probing: 
◦ Collision at H? Try H, H+12. H+22, H+32, ...   
◦ Eliminates primary clustering, but can cause 

“secondary clustering” 



 Choose a prime number p for the array size 
 Then if λ ≤ 0.5: 
◦ Guaranteed insertion 
 If there is a “hole”, we’ll find it 
◦ No cell is probed twice 

 See proof of Theorem 20.4: 
◦ Suppose that we repeat a probe before trying more 

than half the slots in the table 
◦ See that this leads to a contradiction 
 Contradicts fact that the table size is prime 

11 



 Use an algebraic trick to calculate next index 
◦ Replaces mod and general multiplication 
◦ Difference between successive probes yields: 
 Probe i location, Hi = (Hi-1 + 2i – 1) % M 
◦ Just use bit shift to “multiply” i by 2 
◦ Don’t need mod, since i is at most M/2, so 
 probeLoc= probeLoc+ (i << 1) - 1;  

if (probeLoc >= M) 
  probeLoc -= M;      



 No one has been able to analyze it! 
 Experimental data shows that it works well 
◦ Provided that the array size is prime, and is the 

table is less than half full 



 Use an array of linked lists 
 How would that help resolve collisions? 



Java 6’s HashMap uses chaining and a table 
size that is a power of 2.  This table size 
avoids the mod operator.  What might it use 
instead to make hashCodes() point to table 
locations?  
(http://www.javaspecialists.eu/archive/Issue054.html)  

12 



~40 minutes 
On a handout and in your repository 

Do it with your "EditorTrees" team 
There's a handout for everyone, but only one submission per 

team 

Check out from SVN: 
   HashSetExercise (individ repos) 


	CSSE 230 Day 19
	Announcements
	Review: hash codes distribute keys across an array
	Collision Resolution: Linear Probing
	Linear Probing Efficiency
	Quadratic Probing
	Quadratic Probing Tricks (1/2)
	Quadratic Probing Tricks (2/2)
	Quadratic probing analysis
	Another Approach: Separate Chaining
	Hashing with Chaining
	Hash Table Exercise

