
Hash table basics

hashCode()“ate”à modà 48594983à à 83 ate

…
82
83
84
…

After today, you should be able to…
…explain how hash tables perform insertion in
amortized O(1) time given enough space

} EditorTrees M1 discussion
◦ Unit test points and commits

} HW6 discussion
} Questions on HW6?

1. Section 1: 25 min with CSSE Board of Advisors,
looking for candid student feedback about the
CSSE department

2. Then:
1. Finish red-black trees
2. EditorTrees M1 discussion

Unit test points and commits
3. HW6 discussion
4. Test Tuesday, 7 pm

I have all programming assignment solutions printed in my
office if you want to check and discuss.

5. Look at HW7
6. Questions on test or HW6?

Efficiently putting 5 pounds of
data in a 20 pound bag

} Implementation choices:
◦ TreeSet (and TreeMap) uses a balanced tree: O(log n)
� Uses a red-black tree

◦ HashSet (and HashMap) uses a hash table: amortized
O(1) time

} Related: maps allow insertion, retrieval, and
deletion of items by key:

Since keys are unique, they form a set.
The values just go along for the ride.
We’ll focus on sets.

1. The underlying storage?
Growable array

2. Calculate the index to store an item from
the item itself. How?

Hashcode. Fast but un-ordered.

3. What if that location is already occupied
with another item?

Collision. Two methods to resolve

hashCode()“ate”à modà 48594983à à 83 ate

…
82
83
84
…

} Insertion and lookup in amortized O(1) time!
} Need two things:
◦ A good “hash function”
◦ A large enough storage array

} Doesn’t keep items ordered
◦ So NOT for sorted data
◦ So finding the maximum element is very slow.

} Array of size m
} n elements with unique keys
} If n ≤ m, then use the key as an array

index.
◦ Clearly O(1) lookup of keys

Diagram from John Morris, University of Western Australia

} Issues?
◦ Keys must be unique.
◦ Often the range of potential keys is much larger

than the storage we want for an array
� Example: RHIT student IDs vs. # Rose students

1

2

hashCode()key à à integer

Objects that are .equals()
MUST have the same hashCode values
A good hashCode() also
is fast to calculate and
distributes the keys, like:

hashCode(“ate”)= 48594983
hashCode(“ape”)= -76849201 (can be negative if overflows)
hashCode(“awe”) = 14893202

} Example: if m = 100:

hashCode(“ate”)= 48594983
hashCode(“ape”)= -76849201
hashCode(“awe”) = 1489036

mod
à83
à46*
à36

*Note: since the hashCode is an integer, it might be negative,
and negative numbers have negative remainders.

Trick: If it is negative, add Integer.MAX_VALUE to make it
positive before you mod.

} How Java’s hashCode() is used:

◦ Unless this position is already occupied

a “collision”

3-4

hashCode()“ate”à modà 48594983à à 83 ate

…
82
83
84
…

} Default if you inherit Object’s: memory location

} Many JDK classes override hashCode()
◦ Integer: the value itself
◦ Double: XOR first 32 bits with last 32 bits
◦ String: we’ll see shortly!
◦ Date, URL, ...

} Custom classes should override hashCode()
◦ Use a combination of final fields.
◦ If key is based on mutable field, then the hashcode will

change and you will lose it!
◦ People usually use strings if possible.

5

} Advantages?

} Disadvantages?

// This could be in the String class
public static int hash(String s) {
int total = 0;
for (int i=0; i<s.length(); i++)
total = total + s.charAt(i);

return total;
}

} Spreads out the values more, and anagrams not an issue.
} What about overflow during computation?
◦ What happens to first characters?

// This could be in the String class
public static int hash(String s) {
int total = 0;
for (int i=0; i<s.length(); i++)
total = total*256 + s.charAt(i);

return total;
}

} Spread out, anagrams OK, overflow OK.
} This is String’s hashCode() method.
} The (x = 31x + y) pattern is a good one to follow.

// This could be in the String class
public static int hash(String s) {
int total = 0;
for (int i=0; i<s.length(); i++)
total = total*31 + s.charAt(i);

return total;
}

6

} A good hashcode distributes keys evenly, but
collisions will still happen

} hashCode() are ints à only ~4 billion unique values.
◦ How many 16 character ASCII strings are possible?

} If n is small, tables should be much smaller
◦ mod will cause collisions too!

} Solutions:
◦ Chaining
◦ Probing (Linear, Quadratic)

7

hashCode()“ate”à modà 48594983à à 83 ate

…
82
83
84
…

Java’s HashMap uses chaining and a table
size that is a power of 2.

8

Grow in another direction Examples: .get(“at”), .get(“him),
(hashcode=18), .add(“him”), .delete(“with”)

9-10

m array slots,
n items.
Load factor, l=n/m.

Runtime = O(l)

Space-time trade-off
1. If m constant, then this is O(n). Why?

2. If keep m~0.5n (by doubling), then this is amortized O(1). Why?

} No need to grow in second direction

} No memory required for pointers
◦ Historically, this was important!
◦ Still is for some data…

} Will still need to keep load factor (l=n/m) low
or else collisions degrade performance
◦ We’ll grow the array again

} Probe H (see if it causes a collision)
} Collision? Also probe the next available space:
◦ Try H, H+1, H+2, H+3, …
◦ Wraparound at the end of the array

} Example on board: .add() and .get()

} Problem: Clustering

} Animation:
◦ http://www.cs.auckland.ac.nz/software/AlgAnim/has

h_tables.html

11

Figure 20.4
Linear probing hash
table after each insertion

Data Structures & Problem Solving using JAVA/2E Mark Allen Weiss © 2002 Addison Wesley

Good example
of clustering
and wraparound

} For probing to work, 0 £ l £ 1.

} For a given l, what is the expected number
of probes before an empty location is found?

} Assume all locations are equally likely to be
occupied, and equally likely to be the next
one we look at.

} Then the probability that a given cell is full is
l and probability that a given cell is empty is
1-l.

} What’s the expected number?

12

} Clustering!
◦ Blocks of occupied cells are formed
◦ Any collision in a block makes the block bigger

} Two sources of collisions:
◦ Identical hash values
◦ Hash values that hit a cluster

} Actual average number of probes for large l:

For a proof, see Knuth, The Art of Computer Programming, Vol 3:
Searching Sorting, 2nd ed, Addision-Wesley, Reading, MA, 1998.
(1st edition = 1968)

13

} Easy to implement
} Works well when load factor is low
◦ In practice, once l > 0.5, we usually double the size

of the array and rehash
◦ This is more efficient than letting the load factor

get high

} Reminder: Linear probing:
◦ Collision at H? Try H, H+1, H+2, H+3,...

} New: Quadratic probing:
◦ Collision at H? Try H, H+12. H+22, H+32, ...
◦ Eliminates primary clustering. “Secondary

clustering” isn’t as problematic

} Choose a prime number for the array size, m
} Then if λ ≤ 0.5:
◦ Guaranteed insertion
� If there is a “hole”, we’ll find it
◦ So no cell is probed twice

} Can show with m=17, H=6.

14

For a proof, see Theorem 20.4:
Suppose that we repeat a probe before trying more than half
the slots in the table
See that this leads to a contradiction

Contradicts fact that the table size is prime

} Use an algebraic trick to calculate next index
◦ Difference between successive probes yields:
� Probe i location, Hi = (Hi-1 + 2i – 1) % M

1. Just use bit shift to multiply i by 2
� probeLoc= probeLoc + (i << 1) - 1;
…faster than multiplication

2. Since i is at most M/2, can just check:
� if (probeLoc >= M)

probeLoc -= M;
…faster than mod

} No one has been able to analyze it!
} Experimental data shows that it works well
◦ Provided that the array size is prime, and l < 0.5

} If you are interested, you can do the optional
HashSet exercise.
◦ http://www.rose-hulman.edu/class/csse/csse230/201430/InClassExercises/

} This week’s homework takes a couple
questions from there.

} No one has been able to analyze it!
} Experimental data shows that it works well
◦ Provided that the array size is prime, and l < 0.5

15-17

} Finish the quiz.
} Then check your answers with the next slide

Structure insert Find value Find max value
Unsorted array
Sorted array
Balanced BST
Hash table

Structure insert Find value Find max value
Unsorted array Amortized q(1) q(n) q(n)
Sorted array q(n) q(log n) q(1)
Balanced BST q(log n) q(log n) q(log n)
Hash table Amortized q(1) q(1) q(n)

} Why use 31 and not 256 as a base in the
String hash function?

} Consider chaining, linear probing, and
quadratic probing.
◦ What is the purpose of all of these?
◦ For which can the load factor go over 1?
◦ For which should the table size be prime to avoid

probing the same cell twice?
◦ For which is the table size a power of 2?
◦ For which is clustering a major problem?
◦ For which must we grow the array and rehash every

element when the load factor is high?

} Constants matter!

} 727MB data, ~190M elements
◦ Many inserts, followed by many finds
◦ Microsoft's C++ STL

} Why?
} Sorted arrays are nice if they don’t have to be

updated frequently!
} Trees still nice when interleaved insert/find

Structure build (seconds) Size (MB) 100k finds (seconds)
Hash map 22 6,150 24
Tree map 114 3,500 127
Sorted array 17 727 25

