
Exhaustive search, backtracking, object-oriented Queens

In SVN:
Queens

After today, you should be able to…
…explain the concept of backtracking
…solve the n-queens problem using backtracking

A taste of artificial intelligence

Check out Queens from SVN

 Given: a (large) set of possible solutions to a
problem

 Goal: Find all solutions (or an optimal
solution) from that set

 Questions we ask:
◦ How do we represent the possible solutions?
◦ How do we organize the search?
◦ Can we avoid checking some obvious non-

solutions?

The “search space”

 Examples: Doublets, solving a maze,
the “15” puzzle.

 Taken from:
◦ http://www.cis.upenn.edu/~matuszek/cit594-

2004/Lectures/38-backtracking.ppt

http://www.cis.upenn.edu/~matuszek/cit594-2004/Lectures/38-backtracking.ppt

start ?

?

dead end

dead end

?
?

dead end

dead end

?

success!

dead endhttp://www.cis.upenn.ed
u/~matuszek/cit594-
2004/Lectures/38-
backtracking.ppt

http://www.cis.upenn.edu/~matuszek/cit594-2004/Lectures/38-backtracking.ppt

◦ In how many ways can N chess queens
be placed on an NxN grid, so that none
of the queens can attack any other
queen?

◦ I.e. there are not two queens on the
same row, same column, or same
diagonal.

 There is no "formula"
for generating a solution.

 The famous computer scientist Niklaus
Wirth described his approach to the
problem in 1971: Program Development by
Stepwise Refinement
http://sunnyday.mit.edu/16.355/wirth-
refinement.html#3

http://en.wikipedia.org/wiki/Queen_(chess)

http://sunnyday.mit.edu/16.355/wirth-refinement.html#3

 In how many ways can N chess queens be
placed on an NxN grid, so that none of the
queens can attack any other queen?
◦ I.e. no two queens on the same row, same column,

or same diagonal.

Two minutes
No Peeking!

 Very naive approach. Perhaps stupid is a better

word!

There are N queens, N2 squares.

 For each queen, try every possible square,

allowing the possibility of multiple queens in the

same square.

◦ Represent each potential solution as an N-item array of

pairs of integers (a row and a column for each queen).

◦ Generate all such arrays (you should be able to write

code that would do this) and check to see which ones are

solutions.

◦ Number of possibilities to try in the NxN case:

◦ Specific number for N=8:
281,474,976,710,656

1

Slight improvement. There are N queens, N2

squares. For each queen, try every possible
square, notice that we can't have multiple
queens on the same square.

◦ Represent each potential solution as an N-item
array of pairs of integers (a row and a column for
each queen).

◦ Generate all such arrays and check to see which
ones are solutions.

◦ Number of possibilities to try in NxN case:

◦ Specific number for N=8:

178,462,987,637,760

(vs. 281,474,976,710,656)

 Slightly better approach. There are N queens, N

columns. If two queens are in the same column, they

will attack each other. Thus there must be exactly one

queen per column.

 Represent a potential solution as an N-item array of

integers.

◦ Each array position represents the queen in one column.

◦ The number stored in an array position represents the row of

that column's queen.

◦ Show array for 4x4 solution.

 Generate all such arrays and check to see which ones are

solutions.

 Number of possibilities to try in NxN case:

 Specific number for N=8:
16,777,216

 Still better approach There must also be
exactly one queen per row.

 Represent the data just as before, but notice
that the data in the array is a set!
◦ Generate each of these and check to see which ones

are solutions.

◦ How to generate? A good thing to think about.

◦ Number of possibilities to try in NxN case:

◦ Specific number for N=8:

40,320

 Backtracking solution

 Instead of generating all permutations of N

queens and checking to see if each is a

solution, we generate "partial placements" by

placing one queen at a time on the board

 Once we have successfully placed k<N

queens, we try to extend the partial solution

by placing a queen in the next column.

 When we extend to N queens, we have a

solution.

 Play the game:
◦ http://homepage.tinet.ie/~pdpals/8queens.htm

 See the solutions:
◦ http://www.dcs.ed.ac.uk/home/mlj/demos/queens

http://homepage.tinet.ie/~pdpals/8queens.htm
http://www.dcs.ed.ac.uk/home/mlj/demos/queens

>java RealQueen 5

SOLUTION: 1 3 5 2 4

SOLUTION: 1 4 2 5 3

SOLUTION: 2 4 1 3 5

SOLUTION: 2 5 3 1 4

SOLUTION: 3 1 4 2 5

SOLUTION: 3 5 2 4 1

SOLUTION: 4 1 3 5 2

SOLUTION: 4 2 5 3 1

SOLUTION: 5 2 4 1 3

SOLUTION: 5 3 1 4 2

 Board configuration represented by a linked
list of Queen objects

Fields of RealQueen:

column

row

neighbor

Designed by Timothy Budd
http://web.engr.oregonstate.edu/~budd/Books/oopintro3e/info/slides/chap06/java.htm

2-5

http://web.engr.oregonstate.edu/~budd/Books/oopintro3e/info/slides/chap06/java.htm

 Each queen sends messages directly to its
immediate neighbor to the left (and
recursively to all of its left neighbors)

 Return value provides information concerning
all of the left neighbors:

 Example: neighbor.canAttack(currentRow, col)
◦ Message goes to the immediate neighbor, but the

real question to be answered by this call is

◦ "Hey, neighbors, can any of you attack me if I place
myself on this square of the board?"

 findFirst()

 findNext()

 canAttack(int row, int col)

6-10

Your job (part of WA6):
Understand the job of each of these methods.

Javadoc from the Queen interface can help
Fill in the (recursive) details in the RealQueen class
Debug

More details on next slide

1. Queen asks its neighbors to find the first position
in which none of them attack each other
◦ Found? Then queen tries to position itself so that it

cannot be attacked.

2. If the rightmost queen is successful, then a
solution has been found! The queens cooperate
in recording it.

3. Otherwise, the queen asks its neighbors to find
the next position in which they do not attack
each other

4. When the queens get to the point where there is
no next non-attacking position, all solutions
have been found and the algorithm terminates

And recursion does its magic!

