
Abstract Data Types
Data Structure “Grand Tour”

Java Collections

http://gcc.gnu.org/onlinedocs/libstdc++/images/pbds_different_underlying_dss_1.png

} Stacks and Queues
◦ Ideally, you have met with your partner to start
◦ Try your best to work well together, even if you

have different amounts of programming
experience.

} Finish day 4 + quiz with instructor if needed.

} From question 2:
Suppose T1(N) is O(f(N)) and T2(N) is O(f(N)). Prove
that T1(N) + T2(N) is O(f(N)) or give a counter-
example:

} Hint: Constants c1 and c2 must exist for T1(N)
and T2(N) to be O(f(N))
◦ How can you use them?

} Does this work exactly like this for T1(N) - T2(N) ?
} Remember, O isn’t a tight bound.

} explain what an Abstract Data Type (ADT) is
} List examples of ADTs in the Collections

framework (from HW2 #1)
} List examples of data structures that

implement the ADTs in the Collections
framework

} Choose an ADT and data structure to solve a
problem

◦ A set of operations
◦ May be provided by the hardware (int and double)
◦ By software (java.math.BigInteger)
◦ By software + hardware (int[])

} A mathematical model of a data type
} Specifies:
◦ The type of data stored
◦ The operations supported
◦ Argument types and return types of these operations

◦ What each operation does, but not how

} One special value: zero
} Three basic operations:
◦ succ
◦ pred
◦ isZero

} Derived operations include plus
} Sample rules:
◦ isZero(succ(n)) è false
◦ pred(succ(n)) è n
◦ plus(n, zero) è n
◦ plus(n, succ(m)) è succ(plus(n, m))

Specification
“what is it?”

Implementation:
“How do you do that?”

Application:
“how can you use that?”

CSSE220
CSSE230

} List
◦ Array List
◦ Linked List

} Stack
} Queue
} Set
◦ Tree Set
◦ Hash Set
◦ Linked Hash Set

} Map
◦ Tree Map
◦ Hash Map

} Priority Queue

Underlying data
structures for many

Array
Tree

Implementations for almost all
of these* are provided by the
Java Collections Framework in
the java.util package.

Reminder: Available, efficient, bug-
free implementations of many key

data structures

Most classes are in java.util

You started this in HW2
#1; Weiss Chapter 6 has
more details

} Which ADT to use?
◦ It depends. How do you access your data? By

position? By key? Do you need to iterate through it?
Do you need the min/max?

} Which implementation to use?
◦ It also depends. How important is fast access vs

fast add/remove? Does the data need to be ordered
in any way? How much space do you have?

} But real life is often messier…

Q1-9

} Shout-out to Kate St. Ives in Engineering
Management to contacting Geofeedia and
writing this case study.

} Let’s discuss it now.

Q1-9

} Search for Java 8 Collection
} With a partner, read the javadocs to answer

the quiz questions. You only need to submit
one quiz per pair. (Put both names at top)

} I have used the rest of the slides when
teaching CSSE230 before.
◦ Maybe a good reference?

} When you finish, you may work on your
current CSSE230 assignments

Q3-11

} Use Java’s Collections Framework.
◦ Search for Java 8 Collection
◦ With a partner, read the javadocs to answer the quiz

questions. You only need to submit one quiz per pair.
(Put both names at top)

} I have used the rest of the slides when teaching
CSSE230 before.
◦ Maybe a good reference?

} When you finish, you may work on your current
CSSE230 assignments

} Size must be declared when the
array is constructed

} Can look up or store items by index
Example:

nums[i+1] = nums[i] + 2;

} How is this done?

a[0]

a[1]

a[2]

a[i]

a[N-2]

a[N-1]

La

} A list is an ordered collection where elements
may be added anywhere, and any elements
may be deleted or replaced.

} Array List: Like an array, but growable and
shrinkable.

} Linked List:

Operations
Provided

Array List
Efficiency

Linked List
Efficiency

Random access O(1) O(n)
Add/remove item O(n) O(1)

} A last-in, first-out (LIFO)
data structure

} Real-world stacks
◦ Plate dispensers in

the cafeteria
◦ Pancakes!

} Some uses:
◦ Tracking paths through a maze
◦ Providing “unlimited undo” in an application

Operations
Provided

Efficiency

Push item O(1)
Pop item O(1)

Implemented by
Stack, LinkedList,
and ArrayDeque in
Java

} first-in, first-out
(FIFO)
data structure

} Real-world queues
◦ Waiting line at

the BMV
◦ Character on Star Trek TNG

} Some uses:
◦ Scheduling access to shared resource (e.g., printer)
Operations
Provided

Efficiency

Enqueue item O(1)
Dequeue item O(1)

Implemented by
LinkedList and
ArrayDeque in
Java

} A collection of items without duplicates (in
general, order does not matter)
◦ If a and b are both in set, then !a.equals(b)

} Real-world sets:
◦ Students
◦ Collectibles

} One possible use:
◦ Quickly checking if an

item is in a collection

Operations HashSet TreeSet
Add/remove item O(1) O(log n)
Contains? O(1) O(log n)

Can hog space Sorts items!

Example from 220

} Associate keys with values
} Real-world “maps”
◦ Dictionary
◦ Phone book

} Some uses:
◦ Associating student ID with transcript
◦ Associating name with high scores

Operations HashMap TreeMap
Insert key-value pair O(1) O(log n)
Look up the value associated
with a given key

O(1) O(log n)

Can hog space Sorts items by key!

How is a TreeMap like a TreeSet?
How is it different?

} Each item stored has an associated priority
◦ Only item with “minimum” priority is accessible
◦ Operations: insert, findMin, deleteMin

} Real-world “priority queue”:
◦ Airport ticketing counter

} Some uses
◦ Simulations
◦ Scheduling in an OS
◦ Huffman coding

Not like regular
queues!

Operations
Provided

Efficiency

Insert O(log n)
Find Min O(log n)
Delete Min O(log n)

The version in Warm Up
and Stretching isn’t this

efficient.

} Collection of nodes
◦ One specialized node is the root.
◦ A node has one parent (unless it is the root)
◦ A node has zero or more children.

} Real-world “trees”:
◦ Organizational hierarchies
◦ Some family trees

} Some uses:
◦ Directory structure

on a hard drive
◦ Sorted collections

Operations
Provided

Efficiency

Find O(log n)
Add/remove O(log n)

Only if tree is
“balanced”

} A collection of nodes and edges
◦ Each edge joins two nodes
◦ Edges can be directed or undirected

} Real-world “graph”:
◦ Road map

} Some uses:
◦ Tracking links between web pages
◦ Facebook

Operations
Provided

Efficiency

Find O(n)
Add/remove O(1) or O(n) or O(n2)

Depends on
implementation

(time/space trade off)

} Graph whose edges have numeric labels
} Examples (labels):
◦ Road map (mileage)
◦ Airline's flight map (flying time)
◦ Plumbing system (gallons per minute)
◦ Computer network (bits/second)

} Famous problems:
◦ Shortest path
◦ Maximum flow
◦ Minimal spanning tree
◦ Traveling salesman
◦ Four-coloring problem for planar graphs

} Array
} List
◦ Array List
◦ Linked List

} Stack
} Queue
} Set
◦ Tree Set
◦ Hash Set

} Map
◦ Tree Map
◦ Hash Map

} Priority Queue
} Tree
} Graph
} Network

We’ll implement and use nearly
all of these, some multiple ways.
And a few other data structures.

Structure find insert/remove Comments
Array O(n) can't do it Constant-time access by position
Stack top only

O(1)
top only
O(1)

Easy to implement as an array.

Queue front only
O(1)

O(1) insert rear, remove front.

ArrayList O(log N) O(N) Constant-time access by position
Linked List O(N) O(1) O(N) to find insertion position.
HashSet/Map O(1) O(1) If table not very full
TreeSet/Map O(log N) O(log N) Kept in sorted order
PriorityQueue O(1) O(log N) Can only find/remove smallest
Tree O(log N) O(log N) If tree is balanced, O(N) otherwise
Graph O(N*M) ? O(M)? N nodes, M edges

Network shortest path, maxFlow

