

Maximum Contiguous Subsequence Sum

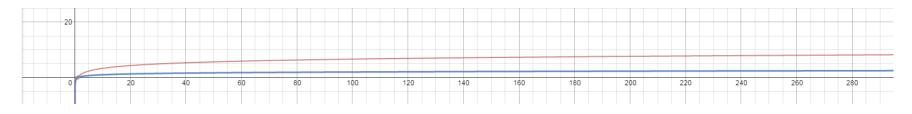
After today's class you will be able to:

state and solve the MCSS problem on small arrays by observation find the exact runtimes of the naive MCSS algorithms

https://openclipart.org/image/2400px/svg_to_png/169467/bow_tie.png

Homework 1

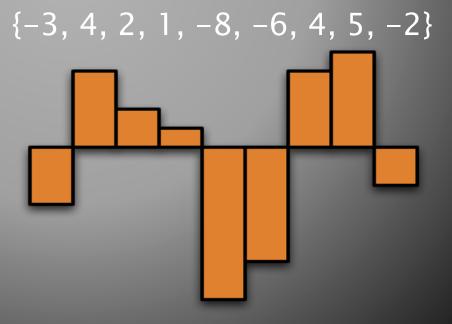
- Is it true that $\log_a(n)$ is $\theta(\log_b(n))$?
- Complete homework 1 to find out the exciting conclusion!
- Here is the graph for a=2 and b=10:



Is it true that 3^n is $\theta(2^n)$?

Maximum Contiguous Subsequence Sum

A deceptively deep problem with a surprising solution.



A Nice Algorithm Analysis Example

- Problem: Given a sequence of numbers, find the maximum sum of a contiguous subsequence.
- Why study?
- Positives and negatives make it interesting. Consider:
 - What if all the numbers were positive?
 - What if they all were negative?
 - What if we left out "contiguous"?
- Analysis of obvious solution is neat
- We can make it more efficient later.

Formal Definition: Maximum Contiguous Subsequence Sum

Problem definition: Given a non-empty sequence of *n* (possibly negative) integers $A_1, A_2, ..., A_n$, find the maximum consecutive subsequence $S_{i,j} = \sum_{k=i}^{j} A_k$, and the corresponding values of *i* and *j*.

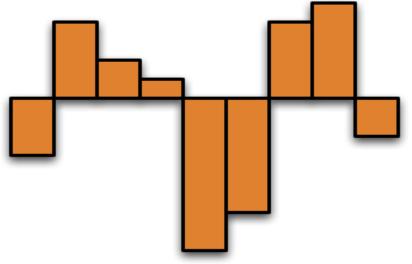
Quiz questions:

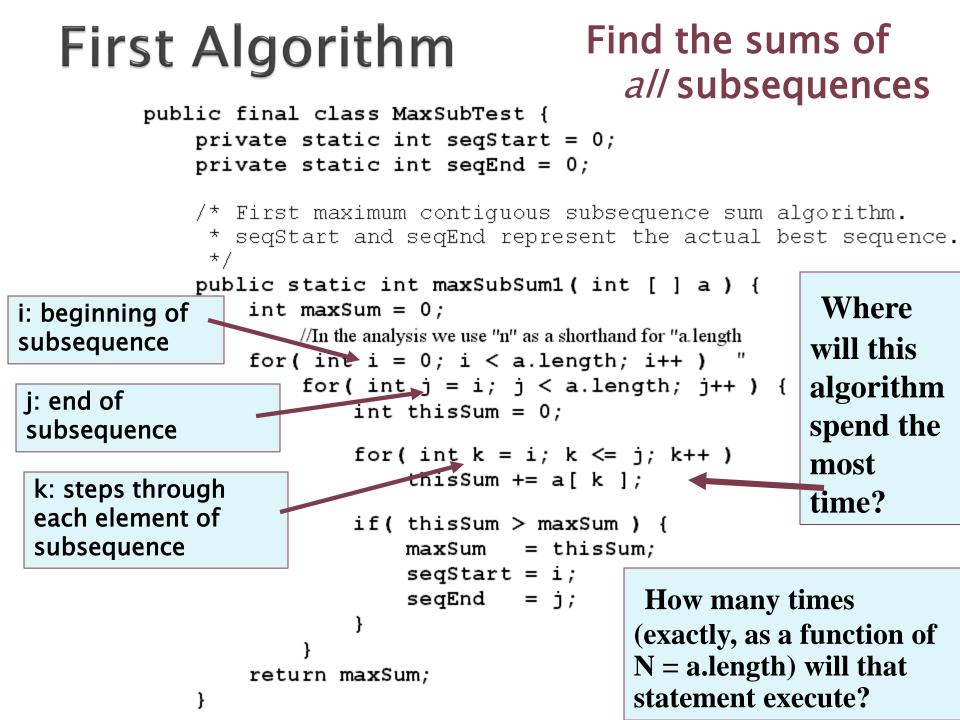
- In {−2, 11, −4, 13, −5, 2}, S_{1,3} = ?
- In {1, -3, 4, -2, -1, 6}, what is MCSS?
- If every element is negative, what's the MCSS?

1-based indexing. But we'll use 0-based indexing

Write a simple correct algorithm Q5 now

- Must be easy to explain
- Correctness is KING. Efficiency doesn't matter yet.
- 3 minutes
- Examples to consider:
 {-3, 4, 2, 1, -8, -6, 4, 5, -2}
 {5, 6, -3, 2, 8, 4, -12, 7, 2}





Q6, Q Analysis of this Algorithm

What statement is executed the most often?How many times?

//In the analysis we use "n" as a shorthand for "a length "
for(int i = 0; i < a.length; i++)
for(int j = i; j < a.length; j++) {
 int thisSum = 0;
 for(int k = i; k <= j; k++)
 thisSum += a[k];</pre>

Interlude

 Computer Science is no more about computers than astronomy is about _____

Donald Knuth

Interlude

 Computer Science is no more about computers than astronomy is about <u>telescopes</u>.

Donald Knuth

Where do we stand?

- We showed MCSS is O(n³).
 - Showing that a problem is O(g(n)) is relatively easy just analyze a known algorithm.

• Is MCSS $\Omega(n^3)$?

- Showing that a problem is Ω (g(n)) is much tougher. How do you prove that it is impossible to solve a problem more quickly than you already can?
- Or maybe we can find a faster algorithm?

 $\begin{array}{l} f(n) \text{ is } O(g(n)) \text{ if } f(n) \leq cg(n) \text{ for all } n \geq n_0 \\ \circ \text{ So } O \text{ gives an upper bound} \\ f(n) \text{ is } \Omega(g(n)) \text{ if } f(n) \geq cg(n) \text{ for all } n \geq n_0 \\ \circ \text{ So } \Omega \text{ gives a lower bound} \\ f(n) \text{ is } \theta(g(n)) \text{ if } c_1g(n) \leq f(n) \leq c_2g(n) \text{ for all } n \geq n_0 \\ \circ \text{ So } \theta \text{ gives a tight bound} \\ \circ \text{ f(n) is } \theta(g(n)) \text{ if it is both } O(g(n)) \text{ and } \Omega(g(n)) \end{array}$

What is the main source of the simple algorithm's inefficiency?

//In the analysis we use "n" as a shorthand for "a length "
for (int i = 0; i < a.length; i++)
for (int j = i; j < a.length; j++) {
 int thisSum = 0;
 for (int k = i; k <= j; k++)
 thisSum += a[k];</pre>

The performance is bad!

Eliminate the most obvious inefficiency...

}

]

- for(int i = 0; i < a.length; i++) {
 int thisSum = 0;
 for(int j = i; j < a.length; j++) {
 thisSum += a[j];</pre>
 - if(thisSum > maxSum) {
 maxSum = thisSum;
 seqStart = i;
 seqEnd = j;

MCSS is O(n²)

• Is MCSS $\Omega(n^2)$?

- Showing that a problem is Ω (g(n)) is much tougher. How do you prove that it is impossible to solve a problem more quickly than you already can?
- Can we find a yet faster algorithm?

 $\begin{array}{l} f(n) \text{ is } O(g(n)) \text{ if } f(n) \leq cg(n) \text{ for all } n \geq n_0 \\ \circ \text{ So O gives an upper bound} \\ f(n) \text{ is } \Omega(g(n)) \text{ if } f(n) \geq cg(n) \text{ for all } n \geq n_0 \\ \circ \text{ So } \Omega \text{ gives a lower bound} \\ f(n) \text{ is } \theta(g(n)) \text{ if } c_1g(n) \leq f(n) \leq c_2g(n) \text{ for all } n \geq n_0 \\ \circ \text{ So } \theta \text{ gives a tight bound} \\ \circ \text{ f(n) is } \theta(g(n)) \text{ if it is both } O(g(n)) \text{ and } \Omega(g(n)) \end{array}$

<mark>Q8, Q9</mark>

Can we do even better?

Tune in next time for the exciting conclusion!

But now... Teaming? Or do we really want the conclusion now?

Thoughts on Teaming

Two Key Rules

- No prima donnas
 - Working way ahead, finishing on your own, or changing the team's work without discussion:
 - harms the education of your teammates
- No laggards
 - Coasting by on your team's work:
 - harms your education
- Both extremes
 - are selfish
 - may result in a failing grade for you on the project

Grading of Team Projects

- I'll assign an overall grade to the project
- Grades of individuals will be adjusted up or down based on team members' assessments
- At the end of the project each of you will:
 - Rate each member of the team, including yourself
 - Write a short Performance Evaluation of each team member with evidence that backs up the rating
 - Positives
 - Key negatives

Ratings

- Excellent—Consistently did what he/she was supposed to do, very well prepared and cooperative, actively helped teammate to carry fair share of the load
- Very good—Consistently did what he/she was supposed to do, very well prepared and cooperative
- Satisfactory—Usually did what he/she was supposed to do, acceptably prepared and cooperative
- Ordinary—Often did what he/she was supposed to do, minimally prepared and cooperative
- Marginal—Sometimes failed to show up or complete tasks, rarely prepared
- **Deficient**—Often failed to show up or complete tasks, rarely prepared
- Unsatisfactory—Consistently failed to show up or complete tasks, unprepared
- Superficial—Practically no participation
- No show—No participation at all