Q1-3

CSSE 230 Day 2

Growable Arrays Continued Big-Oh and its cousins

Submit Growable Array exercise Answer Q1-3 from today's in-class quiz.

Agenda and goals

- Finish course intro
- Growable Array recap
- Big-Oh and cousins
- After today, you'll be able to
- Use the term amortized appropriately in analysis
- explain the meaning of big-Oh, big-Omega (Ω), and big-Theta (θ)
- apply the definition of big-Oh to prove runtimes of functions

Announcements and FAQ

- You will not usually need the textbook in class

Tuesday is Tie day (or "Professional Attire" day)

Late days?

- Individual competence requirement

Announcements and FAQ

Tuesday is Tie Day!
(or "Professional Attire" Day)

- All should do piazza post (3-4 students/section left)
- Late days?

You must demonstrate programming competence on exams to succeed

- See syllabus for exam weighting and caveats.
- Think of every program you write as a practice test
- Especially HW4 and test 2a

Warm Up and Stretching thoughts

- Short but intense! ~45 lines of code total in our solutions to all but Adder
- Be sure to read the description of how it will be graded. Note how style will be graded.
- Demo: Running the JUnit tests for test, file, package, and project

Demo: Run the Adder program

Homework 1 help

Examples. How many times does sum++ run?

$$
\begin{aligned}
& \text { for }(\mathrm{i}=4 ; \mathrm{i}<\mathrm{n} ; \mathrm{i}++) \\
& \text { for }(\mathrm{j}=0 ; \mathrm{j}<=\mathrm{n} ; \mathrm{j}++) \\
& \quad \text { sum }++;
\end{aligned}
$$

Why is this one so easy? (does the inner loop depend on outer loop?)
What if inner were $(j=0 ; j<=i ; j++)$?

$$
\begin{aligned}
& \text { for }(\mathrm{i}=1 ; \mathrm{i}<=\mathrm{n} ; \mathrm{i} *=2) \\
& \quad \text { sum }++ \text {; }
\end{aligned}
$$

Be precise, using floor/ceiling as needed, to get full credit.

Questions?

- About Homework 1?
- Aim to complete tonight, since it is due after next class
- It is substantial
- The last problem (the table) is worth lots of points!
- About the Syllabus?

Growable Arrays Exercise

Daring to double

Growable Arrays Table

\mathbf{N}	$\mathbf{E}_{\mathbf{N}}$	Answers for problem 2
4	0	0
5	0	0
6	5	5
7	5	$5+6=11$
10	5	$5+6+7+8+9=35$
11	$5+10=15$	$5+6+7+8+9+10=45$
20	15	sum $(\mathrm{i}, \mathrm{i}=5 . .19)=180 \quad$ using Maple
21	$5+10+20=35$	$\operatorname{sum}(\mathrm{i}, \mathrm{i}=5 . .20)=200$
40	35	$\operatorname{sum}(\mathrm{i}, \mathrm{i}=5 . .39)=770$
41	$5+10+20+40=75$	$\operatorname{sum}(\mathrm{i}, \mathrm{i}=5 . .40)=810$

Doubling the Size

- Doubling each time:
- Assume that $\mathrm{N}=5\left(2^{\mathrm{k}}\right)+1$.
- Total \# of array elements copied:

k	N	\#copies
0	6	5
1	11	$5+10=15$
2	21	$5+10+20=35$
3	41	$5+10+20+40=75$
4	81	$5+10+20+40+80=155$
k	$=5\left(2^{k}\right)+1$	$5\left(1+2+4+8+\ldots+2^{k}\right)$

Express as a closed-form expression in terms of K , then express in terms of N

Adding One Each Time

- Total \# of array elements copied:

N	\#copies
6	5
7	$5+6$
8	$5+6+7$
9	$5+6+7+8$
10	$? ? ?$
N	

Conclusions

- What's the average overhead cost of adding an additional string...
- in the doubling case?
- in the add-one case?

> This is called the amortized
> cost

- So which should we use?

More math review

Q6

Review these as needed

- Logarithms and Exponents
- properties of logarithms:

$$
\begin{aligned}
& \log _{b}(x y)=\log _{b} x+\log _{b} y \\
& \log _{b}(x / y)=\log _{b} x-\log _{b} y \\
& \log _{\mathrm{b}} x^{\alpha}=\alpha \log _{\mathrm{b}} \mathrm{x} \\
& \log _{\mathrm{b}} \mathrm{x}=\frac{\log _{\mathrm{a}} \mathrm{x}}{\log _{\mathrm{a}} \mathrm{~b}}
\end{aligned}
$$

- properties of exponentials:

$$
\begin{aligned}
& \mathrm{a}^{(\mathrm{b}+\mathrm{c})}=\mathrm{a}^{\mathrm{b}} \mathrm{a}^{\mathrm{c}} \\
& \mathrm{a}^{\mathrm{bc}}=\left(\mathrm{a}^{\mathrm{b}}\right)^{\mathrm{c}} \\
& \mathrm{a}^{\mathrm{b} / \mathrm{a}^{\mathrm{c}}=\mathrm{a}^{(\mathrm{b}-\mathrm{c})}} \\
& \mathrm{b}=\mathrm{a}^{\log _{\mathrm{a}} \mathrm{~b}} \\
& \mathrm{~b}^{\mathrm{c}}=\mathrm{a}^{\mathrm{c}^{*} \log _{\mathrm{a}} \mathrm{~b}}
\end{aligned}
$$

Practice with exponentials and logs

(Do these with a friend after class, not to turn in)
Simplify: Note that $\log n$ (without a specified) base means $\log _{2} n$. Also, $\log \mathrm{n}$ is an abbreviation for $\log (\mathrm{n})$.

1. $\log (2 n \log n)$

2. $\log (n / 2)$
3. $\log (\mathbf{s q r t}(\mathrm{n}))$
4. $\log (\log (\operatorname{sqrt}(n)))$
5. $\log _{4} n$
6. $2^{2 \log n}$
7. if $n=2^{3 k}-1$, solve for k.

Where do logs come from in algorithm analysis?

Solutions
 No peeking!

Simplify: Note that $\log n$ (without a specified) base means $\log _{2} n$. Also, $\log n$ is an abbreviation for $\log (n)$.

1. $1+\log n+$
2. $\log n-1$
3. $1 / 2 \log n$

$$
\text { 4. }-1+\log \log n
$$

5. $(\log n) / 2$
6. n^{2}
7. $n+1=2^{3 k}$

$$
\log (n+1)=3 k
$$

$$
k=\log (n+1) / 3
$$

A: Any time we cut things in half at each step (like binary search or mergesort)

Running Times

- Algorithms may have different time complexity on different data sets
, What do we mean by "Worst Case"?
- What do we mean by "Average Case"?
- What are some application domains where knowing the Worst Case time complexity would be important?
- http://cacm.acm.org/magazines/2013/2/160173-the-tail-at-scale/fulltext

Average Case and Worst Case

Worst-case vs amortized cost for adding an element to an array using the doubling scheme

Worst-case:
O (n)

amortized:
$\mathrm{O}(1)$

Asymptotics: The "Big"
 Three

Big-Oh
Big-Omega
Big-Theta

Asymptotic Analysis

- We only care what happens when N gets large
- Is the function linear? quadratic? exponential?

Figure 5.1
Running times for small inputs

Figure 5.2
Running times for moderate inputs

Figure 5.3

Functions in order of increasing growth rate

Function	Name	The answer to most big- Oh questions is one of
c	Constant	these functions
$\log N$	logarithmic	
$\log ^{2} N$	Log-squared	
N	Linear	
$N \log N$	Quadratic	
N^{2}	Cubic	
N^{3}	Exponential	
2^{N}		

Simple Rule for Big-Oh

- Drop lower order terms and constant factors
- $7 n-3$ is $O(n)$
- $8 n^{2} \log n+5 n^{2}+n$ is $O\left(n^{2} \log n\right)$

Definition of Big-Oh

- Given functions $f(n)$ and $g(n)$, we say that $f(n)$ is $O(g(n))$ if and only if $f(n) \leq c g(n)$ for all $n \geq n_{0}$.
- Two constants: $c>0$ is a real number and $n_{0} \geq 0$ is an integer.
- $f(n)$ and $g(n)$ are functions over non-negative integers.

To prove Big Oh, find 2 constants

- A function $f(n)$ is (in) $O(g(n))$ if there exist two positive constants c and n_{0} such that for all $n \geq n_{0}$, $\mathrm{f}(\mathrm{n}) \leq \mathrm{c} \mathrm{g}(\mathrm{n})$
- So all we must do to prove that $f(n)$ is $O(g(n))$ is produce two such constants.
- $f(n)=4 n+15, g(n)=? ? ?$.
- $\mathrm{f}(\mathrm{n})=\mathrm{n}+\sin (\mathrm{n}), \mathrm{g}(\mathrm{n})=? ? ?$

Assume that all functions have non-negative values, and that we only care about $n \geq 0$. For any function $g(n), O(g(n))$ is a set of functions.

Hidden: Answers to examples

- $\mathrm{f}(\mathrm{n})=\mathrm{n}+12, \mathrm{~g}(\mathrm{n})=$???.
$\circ \mathrm{g}(\mathrm{n})=\mathrm{n}$. Then $\mathrm{c}=3$ and $\mathrm{n}_{0}=6$, or $\mathrm{c}=4$ and $n_{0}=4$, etc.
- $\mathrm{f}(\mathrm{x})=\mathrm{x}+\sin (\mathrm{x}): \mathrm{g}(\mathrm{n})=\mathrm{n}, \mathrm{c}=2, \mathrm{n}_{0}=1$
, $f(x)=x^{2}+\operatorname{sqrt}(x): g(n)=n^{2}, c=2, n_{0}=1$

Big-Oh, Big-Omega and Big-Theta O() Ω () θ ()

- $f(n)$ is $O(g(n))$ if $f(n) \leq c g(n)$ for all $n \geq n_{0}$
- So big-Oh (0) gives an upper bound
- $f(n)$ is $\Omega(g(n))$ if $f(n) \geq c g(n)$ for all $n \geq n_{0}$ - So big-omega (Ω) gives a lower bound
- $f(n)$ is $\theta(g(n))$ if it is both $O(g(n))$ and $\Omega(g(n))$ Or equivalently:
- $f(n)$ is $\theta(g(n))$ if $c_{1} g(n) \leq f(n) \leq c_{2} g(n)$ for all $n \geq n_{0}$ - So big-theta (θ) gives a tight bound

We usually show algorithms (in code) are $\theta(\mathrm{g}(\mathrm{n})$). Next class, we'll also discuss how to show problems are $\theta(g(n))$.

- True or false: $3 n+2$ is $\mathrm{O}\left(n^{3}\right)$

True or false: $3 n+2$ is $\Theta\left(n^{3}\right)$

Big-Oh Style

- Give tightest bound you can
- Saying $3 n+2$ is $\mathrm{O}\left(n^{3}\right)$ is true, but not as useful as saying it's O(n)
- On a test, we'll ask for Θ to be clear.
- Simplify:
- You could also say: $3 n+2$ is $\mathrm{O}(5 n-3 \log (n)+17)$
- And it would be technically correct...
- It would also be poor taste ... and your grade will reflect that.

Efficiency in context

There are times when one might choose a higher-order algorithm over a lower-order one.

- Brainstorm some ideas to share with the class
C.A.R. Hoare, inventor of quicksort, wrote:

Premature optimization is the root of all evil.

