CSSE 230 Hash table basics

After today, you should be able to... ... explain how hash tables perform insertion in amortized O(1) time given enough space

Announcements and questions

 Section 2: 15+ min with CSSE Board of Advisors, looking for candid student feedback about the CSSE department

2. Then:

- EditorTrees M1 discussion
 Unit test points and commits
- 2. HW6 discussion
- 3. Questions on HW6?

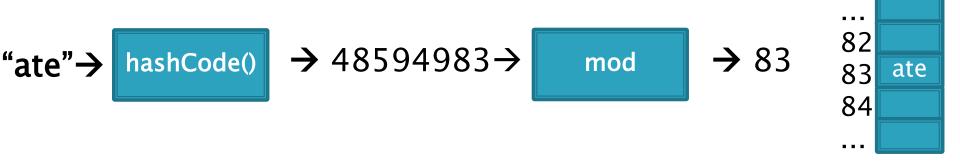
Hashing

Efficiently putting 5 pounds of data in a 20 pound bag

Reminder: sets hold unique items

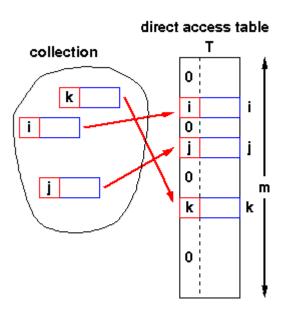
- Implementation choices:
 - TreeSet (and TreeMap) uses a balanced tree: O(log n)
 - Uses a red-black tree
 - HashSet (and HashMap) uses a hash table: amortized
 O(1) time
- Related: maps allow insertion, retrieval, and deletion of items by key.
 - Since keys are unique, they form a set.
 - The values just go along for the ride.
 - We'll focus on sets.

Big ideas of hash tables



- The underlying storage?
 Growable array
- Calculate the index to store an item from the item itself. How? Hashcode. Fast but un-ordered.
- 3. What if that location is already occupied with another item?
 Collision. Two methods to resolve

Direct Address Tables

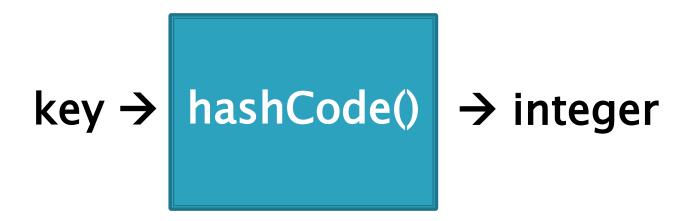


- Array of size m
- n elements with unique keys
- If n ≤ m, then use the key as an array index.
 - Clearly O(1) lookup of keys

Issues?

- Keys must be unique.
- Often the range of potential keys is much larger than the storage we want for an array
 - Example: RHIT student IDs vs. # Rose students

We attempt to create unique keys by applying a .hashCode() function ...

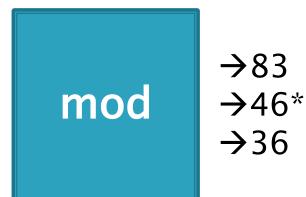


Objects that are .equals()
MUST have the same hashCode values
A good hashCode() also
is fast to calculate and
distributes the keys, like:

hashCode("ate")= 48594983 hashCode("ape")= -76849201 (can be negative if overflows) hashCode("awe") = 14893202 ...and then take it mod the table size (m) to get an index into the array.

• Example: if m = 100:

hashCode("ate")= 48594983 hashCode("ape")= -76849201 hashCode("awe") = 1489036



*Note: since the hashCode is an integer, it might be negative, and negative numbers have negative remainders.

Trick: If it is negative, add Integer.MAX_VALUE to make it positive before you mod.

Index calculated from the object itself, not from 3-4 a comparison with other objects

How Java's hashCode() is used:

Unless this position is already occupied

a "collision"

Some hashCode() implementations

- Default if you inherit Object's: memory location
- Many JDK classes override hashCode()
 - Integer: the value itself
 - Double: XOR first 32 bits with last 32 bits
 - String: we'll see shortly!
 - Date, URL, ...
- Custom classes should override hashCode()
 - Use a combination of final fields.
 - If key is based on mutable field, then the hashcode will change and you will lose it!
 - People usually use strings if possible.

A simple hash function for Strings is a function of every character

```
// This could be in the String class
public static int hash(String s) {
  int total = 0;
  for (int i=0; i<s.length(); i++)
    total = total + s.charAt(i);
  return total;
}</pre>
```

- Advantages?
- Disadvantages?

A better hash function for Strings uses place value

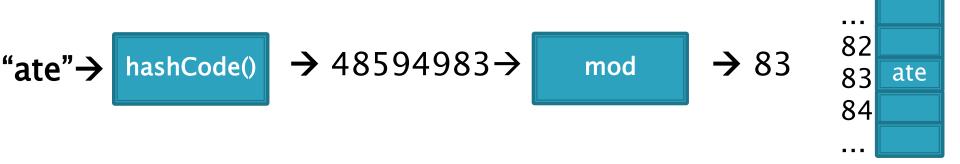
```
// This could be in the String class
public static int hash(String s) {
  int total = 0;
  for (int i=0; i<s.length(); i++)
    total = total*256 + s.charAt(i);
  return total;
}</pre>
```

- Spreads out the values more, and anagrams not an issue.
- What about overflow during computation?
 - What happens to first characters?

A better hash function for Strings uses place value with a base that's prime

```
// This could be in the String class
public static int hash(String s) {
  int total = 0;
  for (int i=0; i<s.length(); i++)
    total = total*31 + s.charAt(i);
  return total;
}</pre>
```

- Spread out, anagrams OK, overflow OK.
- This is String's hashCode() method.
- The (x = 31x + y) pattern is a good one to follow.

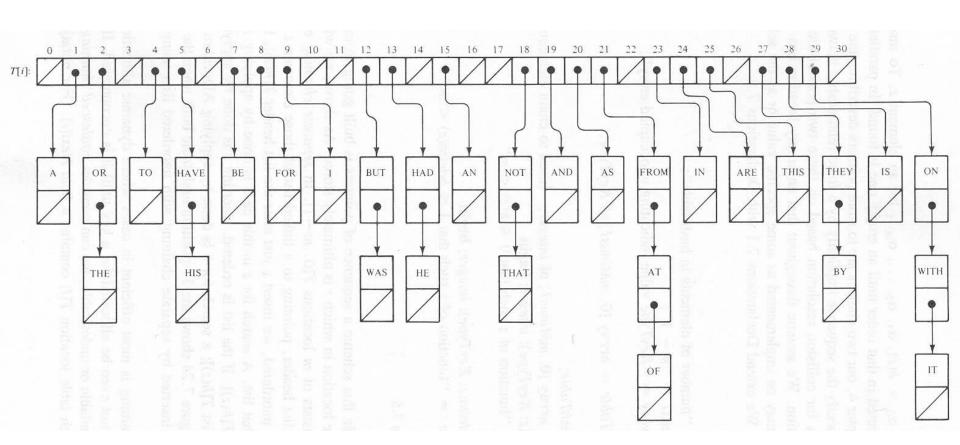


- A good hashcode distributes keys evenly, but collisions will still happen
- ▶ hashCode() are ints \rightarrow only ~4 billion unique values.
 - How many 16 character ASCII strings are possible?
- If n is small, tables should be much smaller
 - mod will cause collisions too!
- Solutions:
 - Chaining
 - Probing (Linear, Quadratic)

Separate chaining: an array of linked lists

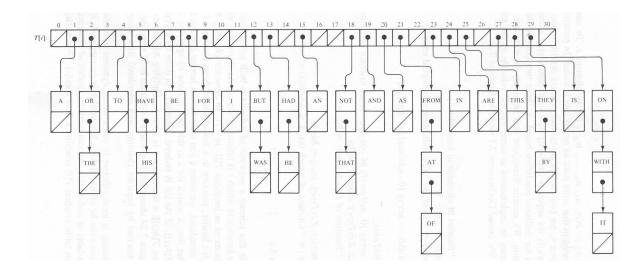
Grow in another direction

Examples: .get("at"), .get("him), (hashcode=18), .add("him"), .delete("with")



Java's **HashMap** uses chaining and a table size that is a power of 2.

Runtime of hashing with chaining depends on the load factor



m array slots, n items. Load factor, $\lambda = n/m$.

Runtime = $O(\lambda)$

Space-time trade-off

- 1. If m constant, then this is O(n). Why?
- 2. If keep $m\sim0.5n$ (by doubling), then this is amortized O(1). Why?

Alternative: Store collisions in other array slots.

- No need to grow in second direction
- No memory required for pointers
 - Historically, this was important!
 - Still is for some data...
- Will still need to keep load factor ($\lambda = n/m$) low or else collisions degrade performance
 - We'll grow the array again

Collision Resolution: Linear Probing

- Probe H (see if it causes a collision)
- Collision? Also probe the next available space:
 - ∘ Try H, H+1, H+2, H+3, ...
 - Wraparound at the end of the array
- Example on board: .add() and .get()
- Problem: Clustering
- Animation:
 - http://www.cs.auckland.ac.nz/software/AlgAnim/has h_tables.html

hash (89, 10) = 9 hash (18, 10) = 8 hash (49, 10) = 9 hash (58, 10) = 8 hash (9, 10) = 9

After insert 89 After insert 18 After insert 49 After insert 58 After insert 9

Figure 20.4
Linear probing hash table after each insertion

Good example of clustering and wraparound

,	mer moen oo	Aller moen to	′ `	noi moon 40	, ,	mer moen oo	•	Allei iliseli s
0				49		49		49
1						58		58
2								9
3								
4								
5								
6								
7								
8		18		18		18		18
9	89	89		89		89		89

Linear probing efficiency also depends on load factor, $\lambda = n/m$

For probing to work, $0 \le \lambda \le 1$.

For a given λ , what is the expected number of probes before an empty location is found?

Rough Analysis of Linear Probing

- Assume all locations are equally likely to be occupied, and equally likely to be the next one we look at.
- Then the probability that a given cell is full is λ and probability that a given cell is empty is $1-\lambda$.
- What's the expected number?

$$\sum_{p=1}^{\infty} \lambda^{p-1} (1-\lambda) p = \frac{1}{1-\lambda}$$

Better Analysis of Linear Probing

Clustering!

- Blocks of occupied cells are formed
- Any collision in a block makes the block bigger
- Two sources of collisions:
 - Identical hash values
 - Hash values that hit a cluster
- Actual average number of probes for large λ :

$$\frac{1}{2}\left(1+\frac{1}{(1-\lambda)^2}\right)$$

Why consider linear probing?

- Easy to implement
- Works well when load factor is low
 - In practice, once $\lambda > 0.5$, we usually **double the size** of the array and rehash
 - This is more efficient than letting the load factor get high

To reduce clustering, probe farther apart

- Reminder: Linear probing:
 - Collision at H? Try H, H+1, H+2, H+3,...
- New: Quadratic probing:
 - Collision at H? Try H, H+1². H+2², H+3², ...
 - Eliminates primary clustering. "Secondary clustering" isn't as problematic

Quadratic Probing works best with low λ and prime m

- Choose a prime number for the array size, m
- ▶ Then if $\lambda \leq 0.5$:
 - Guaranteed insertion
 - If there is a "hole", we'll find it
 - So no cell is probed twice
- ightharpoonup Can show with m=17, H=6.

For a proof, see Theorem 20.4:

Suppose that we repeat a probe before trying more than half the slots in the table

See that this leads to a contradiction

Contradicts fact that the table size is prime

Quadratic probing analysis

- No one has been able to analyze it!
- Experimental data shows that it works well
 - Provided that the array size is prime, and $\lambda < 0.5$

Summary:

Hash tables are fast for some operations

Structure	insert	Find value	Find max value
Unsorted array			
Sorted array			
Balanced BST			
Hash table			

- Finish the quiz.
- Then check your answers with the next slide

Answers:

Structure	insert	Find value	Find max value
Unsorted array	Amortized $\theta(1)$	$\theta(n)$	$\theta(n)$
Sorted array	$\theta(n)$	$\theta(\log n)$	θ(1)
Balanced BST	θ(log n)	$\theta(\log n)$	θ(log n)
Hash table	Amortized $\theta(1)$	θ(1)	θ(n)

Review: discuss with a partner

- Why use 31 and not 256 as a base in the String hash function?
- Consider chaining, linear probing, and quadratic probing.
 - What is the purpose of all of these?
 - For which can the load factor go over 1?
 - For which should the table size be prime to avoid probing the same cell twice?
 - For which is the table size a power of 2?
 - For which is clustering a major problem?
 - For which must we grow the array and rehash every element when the load factor is high?

In practice

- Constants matter!
- ▶ 727MB data, ~190M elements
 - Many inserts, followed by many finds
 - Microsoft's C++ STL

Structure	build (seconds)	Size (MB)	100k finds (seconds)
Hash map	22	6,150	24
Tree map	114	3,500	127
Sorted array	17	727	25

- wny?
- Sorted arrays are nice if they don't have to be updated frequently!
- Trees still nice when interleaved insert/find