

CSSE 230

Red-black trees

After today, you should be able to...
...determine if a tree is a valid red/black tree
...perform top-down insertion in a red/black tree

sumOfHeights from HW5:

- Easy to find sum of heights in a tree if we don't care about efficiency. return height() + left.sumHeights() + right.sumHeights()
- But look at the repeated work!
- Other options:
- Add a field? Better to hide within param/return.
- Store heights in an array? Better to use less space.
- Return multiple things? Very nice. This is a pattern that works for many problems.
- Let's look at efficiency of two solutions
- The code is instrumented to count method calls.

Exam 2

- Format same as Exam 1
- One 8.5×11 sheet of paper (one side) for written part
- Same resources as before for programming part
- Topics: weeks 1-6
- Reading, programs, in-class, written assignments.
- Especially
- Binary trees, including BST, AVL, indexed (EditorTrees), R-B
- Traversals and iterators, size vs. height, rank
- Hash table basics
- Algorithm analysis in general Sample exam on Moodle
has some good questions
- Through day 19, WA6, and EditorTrees milestone 2

CSSE 230 Red-black trees

BST with $\log (\mathrm{n})$ runtime guarantee using only two crayons?
Inspired by pre-schoolers?

A red-black tree is a binary tree with 5 properties:

1. It is a BST
2. Every node is either colored red or black.
3. The root is black.
4. No two successive nodes are red.
5. Every path from the root to a null node has the same number of black nodes ("perfect black balance")

To search a red-black tree, just ignore the colors

Runtime is O (height)
Since it's a BST, runtime of insert and delete should also be O(height)

How tall is a red-black tree?

Best-case: if all nodes black, it is $\sim \log \mathrm{n}$. Worst case: every other node on the longest path is red. Height $\sim 2 \log n$.
Note: Not height-balanced:
Sometimes taller but often shorter on average.

Bottom-Up Insertion Strategy

, Like BST:

- Insert at leaf
- Color it red (to keep perfect black balance)
- But could make two reds in a row?
- On the recursive travel back up the tree (like AVL),
- rotate (single- and double-, like AVL)
- and recolor (new)
- Show now that various "rotation+recoloring"s fix two reds in a row while maintaining black balance.
- At end of insert, always make root of the entire tree black (to fix property 3).

2 Reds in a row, with red outer grandchild and black sibling

figure $\mathbf{1 9 . 3 5}$

If S is black, a single rotation between parent and grandparent, with appropriate color changes, restores property 3 if X is an outside grandchild.

(a) Before rotation
(b) After rotation

2 Reds in a row, with red inner grandchild and black sibling

figure 19.36
If S is black, a double rotation involving X, the parent, and the grandparent, with appropriate color changes, restores property 3 if X is an inside grandchild.

2 Reds in a row, with red outer grandchild and red sibling

figure 19.37
If S is red, a single rotation between parent and grandparent, with appropriate color changes, restores property 3 between X and P.

Case 3 (red sibling) can force us to do multiple rotations recursively

- Bottom-Up insertion strategy must be recursive.
- An alternative:
- If we ever had a black node with two red children, swap the colors and black balance stays.
- Details next...

Top-Down Insertion Strategy

- On the way down the tree to the insertion point, if ever see a black node with two red children, swap the colors.

If X's parent is red, perform rotations, otherwise continue down the tree

- The rotations are done while traversing down the tree to the insertion point. - Avoid rotating into case (c) (2 red siblings) altogether.
- Top-Down insertion can be done with loops without recursion or parent pointers, so is slightly faster.

Insertion summary

- Rotate when an insertion or color flip produces two successive red nodes.
- Rotations are just like those for AVL trees: - If the two red nodes are both left children or both right children, perform a single rotation.
- Otherwise, perform a double rotation.
- Except we recolor nodes instead of adjusting their heights or balance codes.

1. Insert: $1,2,3,4,5,6,7,8$
2. Insert: 7, 6, 5, 4, 3, 2, 1, 1

Relationship with (1)?
Duplicates not inserted.
3. Insert: $10,85,15,70,20,60,30,50,65$, 80, 90, 40, 5, 55
4. Use applet to check your work.

Summary

- Java uses:
- Slightly faster than AVL trees
- What's the catch?
- Need to maintain pointers to lots of nodes (child, parent, grandparent, greatgrandparent, great-greatgrandparent)
- The deletion algorithm is nasty.
java.util
Class TreeMap<K,V>
java.lang.Object
java.util.AbstractMap<K,V> java.util.TreeMap<K,V>

Type Parameters:
K - the type of keys maintained by this map
v - the type of mapped values
All Implemented Interfaces:
Serializable, Cloneable, Map<K,V>, NavigableMap<K,V
public class TreeMap<K,V>
extends AbstractMap<K,V>
implements NavigableMap<K,V>, Cloneable, Se
A Red-Black tree based NavigableMap implementation. T
This implementation provides guaranteed $\log (n)$ time cost fc

