
Red-black trees

After today, you should be able to…
…determine if a tree is a valid red/black tree
…perform top-down insertion in a red/black tree

 Easy to find sum of heights in a tree if we don’t
care about efficiency.
return height() + left.sumHeights() + right.sumHeights()

 But look at the repeated work!

 Other options:
◦ Add a field? Better to hide within param/return.
◦ Store heights in an array? Better to use less space.
◦ Return multiple things? Very nice. This is a pattern that

works for many problems.

 Let’s look at efficiency of two solutions
◦ The code is instrumented to count method calls.

 Format same as Exam 1
◦ One 8.5x11 sheet of paper (one side) for written part

◦ Same resources as before for programming part

 Topics: weeks 1-6
◦ Reading, programs, in-class, written assignments.

◦ Especially

 Binary trees, including BST, AVL, indexed (EditorTrees),
R-B

 Traversals and iterators, size vs. height, rank

 Hash table basics

 Algorithm analysis in general

 Through day 19, WA6, and
EditorTrees milestone 2

Sample exam on Moodle
has some good questions
(and extras we haven’t
done, like sorting)
Best practice: assignments.

T
F
IDK

Red-black trees

BST with Log(n) runtime guarantee using only two crayons?

Inspired by pre-schoolers?

1. It is a BST
2. Every node is either colored red or black.
3. The root is black.
4. No two successive nodes are red.
5. Every path from the root to a null node has the

same number of black nodes (“perfect black
balance”)

1

Runtime is O(height)

Since it’s a BST, runtime of insert and delete
should also be O(height)

Best-case: if all nodes black, it is ~log n.
Worst case: every other node on the longest path
is red. Height ~2 log n.
Note: Not height-balanced:

Sometimes taller but often shorter on
average.

 Like BST:
◦ Insert at leaf
◦ Color it red (to keep perfect black balance)

 But could make two reds in a row?
◦ On the recursive travel back up the tree (like AVL),

 rotate (single- and double-, like AVL)
 and recolor (new)
 Show now that various “rotation+recoloring”s fix two

reds in a row while maintaining black balance.

 At end of insert, always make root of the
entire tree black (to fix property 3).

2

Copyright © 2010 Pearson Education

2

Copyright © 2010 Pearson Education

2

Copyright © 2010 Pearson Education

2

 Bottom-Up insertion strategy must be
recursive.

 An alternative:
◦ If we ever had a black node with two red children, swap the

colors and black balance stays.
◦ Details next…

2

X

Y Z

X

ZY

 On the way down the tree to the insertion point, if
ever see a black node with two red children, swap the
colors.

If X’s parent is red, perform rotations,
otherwise continue down the tree

 The rotations are done while traversing down the tree
to the insertion point.
◦ Avoid rotating into case (c) (2 red siblings) altogether.

 Top-Down insertion can be done with loops without
recursion or parent pointers, so is slightly faster.

2

X

Y Z

X

ZY

 Rotate when an insertion or color flip
produces two successive red nodes.

 Rotations are just like those for AVL trees:
◦ If the two red nodes are both left children or both

right children, perform a single rotation.
◦ Otherwise, perform a double rotation.

 Except we recolor nodes instead of adjusting
their heights or balance codes.

1. Insert: 1, 2, 3, 4, 5, 6, 7, 8

2. Insert: 7, 6, 5, 4, 3, 2, 1, 1
◦ Relationship with (1)?

◦ Duplicates not inserted.

3. Insert: 10, 85, 15, 70, 20, 60, 30, 50, 65,
80, 90, 40, 5, 55

4. Use applet to check your work.

3

 Java uses:

 Slightly faster than AVL
trees

 What’s the catch?
◦ Need to maintain pointers

to lots of nodes (child,
parent, grandparent, great-
grandparent, great-great-
grandparent)

◦ The deletion algorithm is
nasty.

