
Red-black trees

After today, you should be able to…
…determine if a tree is a valid red/black tree
…perform top-down insertion in a red/black tree

 Easy to find sum of heights in a tree if we don’t
care about efficiency.
return height() + left.sumHeights() + right.sumHeights()

 But look at the repeated work!

 Other options:
◦ Add a field? Better to hide within param/return.
◦ Store heights in an array? Better to use less space.
◦ Return multiple things? Very nice. This is a pattern that

works for many problems.

 Let’s look at efficiency of two solutions
◦ The code is instrumented to count method calls.

 Format same as Exam 1
◦ One 8.5x11 sheet of paper (one side) for written part

◦ Same resources as before for programming part

 Topics: weeks 1-6
◦ Reading, programs, in-class, written assignments.

◦ Especially

 Binary trees, including BST, AVL, indexed (EditorTrees),
R-B

 Traversals and iterators, size vs. height, rank

 Hash table basics

 Algorithm analysis in general

 Through day 19, WA6, and
EditorTrees milestone 2

Sample exam on Moodle
has some good questions
(and extras we haven’t
done, like sorting)
Best practice: assignments.

T
F
IDK

Red-black trees

BST with Log(n) runtime guarantee using only two crayons?

Inspired by pre-schoolers?

1. It is a BST
2. Every node is either colored red or black.
3. The root is black.
4. No two successive nodes are red.
5. Every path from the root to a null node has the

same number of black nodes (“perfect black
balance”)

1

Runtime is O(height)

Since it’s a BST, runtime of insert and delete
should also be O(height)

Best-case: if all nodes black, it is ~log n.
Worst case: every other node on the longest path
is red. Height ~2 log n.
Note: Not height-balanced:

Sometimes taller but often shorter on
average.

 Like BST:
◦ Insert at leaf
◦ Color it red (to keep perfect black balance)

 But could make two reds in a row?
◦ On the recursive travel back up the tree (like AVL),

 rotate (single- and double-, like AVL)
 and recolor (new)
 Show now that various “rotation+recoloring”s fix two

reds in a row while maintaining black balance.

 At end of insert, always make root of the
entire tree black (to fix property 3).

2

Copyright © 2010 Pearson Education

2

Copyright © 2010 Pearson Education

2

Copyright © 2010 Pearson Education

2

 Bottom-Up insertion strategy must be
recursive.

 An alternative:
◦ If we ever had a black node with two red children, swap the

colors and black balance stays.
◦ Details next…

2

X

Y Z

X

ZY

 On the way down the tree to the insertion point, if
ever see a black node with two red children, swap the
colors.

If X’s parent is red, perform rotations,
otherwise continue down the tree

 The rotations are done while traversing down the tree
to the insertion point.
◦ Avoid rotating into case (c) (2 red siblings) altogether.

 Top-Down insertion can be done with loops without
recursion or parent pointers, so is slightly faster.

2

X

Y Z

X

ZY

 Rotate when an insertion or color flip
produces two successive red nodes.

 Rotations are just like those for AVL trees:
◦ If the two red nodes are both left children or both

right children, perform a single rotation.
◦ Otherwise, perform a double rotation.

 Except we recolor nodes instead of adjusting
their heights or balance codes.

1. Insert: 1, 2, 3, 4, 5, 6, 7, 8

2. Insert: 7, 6, 5, 4, 3, 2, 1, 1
◦ Relationship with (1)?

◦ Duplicates not inserted.

3. Insert: 10, 85, 15, 70, 20, 60, 30, 50, 65,
80, 90, 40, 5, 55

4. Use applet to check your work.

3

 Java uses:

 Slightly faster than AVL
trees

 What’s the catch?
◦ Need to maintain pointers

to lots of nodes (child,
parent, grandparent, great-
grandparent, great-great-
grandparent)

◦ The deletion algorithm is
nasty.

